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testing the existence of features occupying a relatively
small number of pixels on a textured background. For mostThe work to be described is motivated by the need to simulate

a variety of real–world image textures, all of which can be well real-world images, the probability theory underlying such
approximated by stationary Gaussian random fields (SGRFs). a testing procedure appears to be intractable. One solution
Specifically, given an observed SGRF T, we wish to simulate to this is to use Monte Carlo testing (for example see [31]
SGRFs which look like and possess similar statistical properties and [9]). The general idea is: given an observed image T,
to T. The main contribution of this paper is the development first simulate m different image textures which are similar
of an automatic and nonparametric spectrum estimation proce-

to the background texture of T (i.e., under the null hypoth-dure which is able to produce an estimated spectrum of T in
esis of no cracks present), and then compare T with thesesuch a way that SGRFs simulated from this estimated spectrum
m simulated textures using an appropriate summary statis-have these desirable characteristics. Two special features of the
tic for each image to see if there is a significant difference.procedure are: (i) it relies on a different risk function to that
Section 5 provides an illustrative example.commonly used in nonparametric spectrum estimation, and (ii)

it chooses its smoothing parameters by the technique of unbi- In this paper image textures that can be well modeled
ased risk estimation. Results from a simulation study and a by stationary Gaussian random fields (SGRFs) will receive
practical example demonstrate the good performance of the primary attention (e.g., [6]). Our objective is to propose
procedure. The practical example also illustrates how the pro- an automatic and nonparametric spectrum estimator which
posed procedure can be combined with Monte Carlo testing to is designed to produce an estimated spectrum of an ob-
tackle target testing problems. Finally, the procedure is applied served SGRF in such a way that any subsequent SGRFs
to the synthesis of some Brodatz textures, with some

simulated from this estimated spectrum would (i) look likesuccess.  1997 Academic Press
and (ii) possess similar statistical properties to the observed
SGRF. This contrasts with the traditional approach to spec-
tral estimation, which does not consider the issue of simu-
lating SGRFs from the estimated spectrum. In the process1. INTRODUCTION
of constructing such a spectral estimator, we have discov-
ered that the choice of the risk function for evaluating theThe work described below is motivated by the need to

simulate a variety of real-world textured images, in order quality of fit is of primary importance, and we believe this
is a major finding of the paper. We will illustrate our pointto answer a variety of questions about them. (An abridged

conference version can be found in [21].) As an example, in later sections.
Other methods for spectral estimation of SGRFs haveconsider the two images taken from boreholes, shown in

Fig. 1. For these images, the objective is to test for the also been proposed in the literature; see [20; 3, Addendum;
10, Chap. 6; 15, Chap. 6] for some general discussions.existence of any crack–like features: there are two obvious

cracks, from top to bottom in Fig. 1(a) while there are no These methods include autoregressive moving-average
(ARMA) modeling (e.g., [17, 18, 35]) and maximum en-apparent cracks in Fig. 1(b). Note also the quite different

background textures in the two images. More generally, tropy techniques (e.g., [19, 34]). In addition, Solo [37] has
proposed a class of parametric models based on the cep-we are interested in developing an automatic method for
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FIG. 1. Two images taken from boreholes. Size of each image: 280 3 432 pixels.

strum (Fourier series of the spectrum). He also discusses hxst , (s, t) [ Aj, where A 5 h(s, t) : 0 # s , n1 , 0 # t ,
n2j is a set of indices. This set T is an observed image ofsome shortcomings of the ARMA approach.

Among other popular random field models such as Mar- size n1 by n2 . The periodogram I is defined as:
kov random fields (for example, see the pioneering papers
[13] and [2]), one attractive property of SGRFs is that fast
and exact estimation and simulation methods exist. The I(g1 , g2) 5

1
4f 2n1n2

UO
s,t

ckl exp(2i(sg1 1 tg2))U2

,
spectrum estimator to be described below can be rapidly
computed via the Fourier domain. For fast methods of g1 , g2 [ [0, 2f).
simulating SGRFs from a given spectrum, see [42] and
references given therein. In addition, Appendix B gives To simplify notation, define fst as f(2fs/n1 , 2ft/n2) for
details of the Fourier based method we have used for (s, t) [ A, and similarly for Ist . According to Section IX
simulating SGRFs. of the Addendum of [3] (see also [31, Chap. 5]), under

The rest of this article is organized as follows. Section some mild regularity conditions, if both n1 and n2 are large,
2 provides some background and discusses several risk the approximation
functions. Section 3 describes the proposed spectrum esti-
mator and provides a comparison of some nonparametric

Ist P fst«st , (s, t) [ A (1)spectrum estimators. Section 4 reports the results of a
simulation study. In Section 5 the borehole images are

holds, where all «st’s are independent random variablesrevisited and in Section 6 we investigate the applicability
distributed as the standard exponential distribution, withof SGRFs for general texture modelling. Mathematical
the exception that «00 , «n1/2,0 (if n1 is even), «0,n2/2 (ifdetails are given in Appendix A.
n2 is even), and «n1/2,n2/2 (if both n1 and n2 are even) are
x1

2 random variables. If n1 and/or n2 are small, tapering2. BACKGROUND AND RISK FUNCTIONS
can be applied in order to reduce the bias of the periodo-

Let S 5 hxst , s, t 5 0, 61, 62, . . .j be a two dimensional gram, and (1) remains approximately valid (see [8]). From
equally-spaced and real-valued stationary process with now on «00 , «n1/2,0 «0,n2/2 , and «n1/2,n2/2 will be treated as if
autocovariance function they were standard exponentially distributed, and the ap-

proximation (1) is assumed to be exact. As can be seen
below, the effect of these changes is asymptotically negligi-ckl 5 E(xst xs1k,t1l), k, l 5 0, 61, 62, . . .
ble. In order to guard against extreme observations of I00 ,
In1/2,0 I0,n2/2 , and In1/2,n2/2 one can simply replace them withand spectrum
values obtained by interpolating their neighboring obser-
vations. Hence we have the following model:

f(g1 , g2) 5
1

4f 2 O
k,l

ckl exp(2i(kg1 1 lg2)),

g1 , g2 [ [0, 2f). 5
Ist 5 fst«st , (s, t) [ A,

«st : independent standard exponential
random variables.

(2)

Suppose we observed a rectangular subset T of S : T 5
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If the spectrum f is strictly positive, the multiplicative model of fit in the more relevant low frequencies. Simulation
results to be reported in Section 4 support this argument.(2) can be transformed to an additive model by taking a

logarithmic transform 2. The use of Risk2 or Risk3 implies the assumption that
the spectrum is strictly positive (i.e., no zero values are
allowed). This assumption is often violated (or nearly so)
by Gaussian image textures and can cause numerical prob-5

log Ist 1 c(1) 5 log fst 1 jst , (s, t) [ A,

jst : independent zero mean random variables
with variance f 2/6,

(3)
lems when taking logarithms or reciprocals.

3. SOME PROCEDURES FOR NONPARAMETRIC
SPECTRUM ESTIMATIONwhere c(x) is the digamma function (the derivative of

the gamma function) with c(1) 5 0.57722. Therefore, the
If Risk1 is used as the risk function, it is natural (althoughspectrum f can be estimated nonparametrically either by:

not necessary) to smooth the periodogram rather than(i) smoothing the periodogram under the condition that
its logarithm. In Section 3.1 a nonparametric spectrumthe errors («st) are multiplicative or (ii) after adjusting for
estimator which directly smoothes the periodogram is pro-the constant c(1), smoothing the log-periodogram (log Ist),
posed. A brief discussion of some nonparametric spectrumfollowed by an antilogarithmic transform. In the latter case
estimators which aim to minimize Risk2 (all of whichthe errors (jst) are additive and hence standard nonpara-
smooth the log-periodogram) is given in Section 3.2.metric curve estimation techniques can be applied.

For evaluating the quality of a particular set of estimates
3.1. A Proposed Procedure Based onf̂st for fst , the three most commonly used risk functions are:

Periodogram Smoothing

Two special features of the proposed procedure are: (i)
it works under model (2) which assumes multiplicativeRisk1 5

1
n1n2

E FO
s,t

( fst 2 f̂st)2G,
errors (in contrast to other standard nonparametric curve
estimation methods which assume additive errors) and (ii)

Risk2 5
1

n1n2
E FO

s,t
(log( fst) 2 log( f̂st))2G, the smoothing parameters involved are automatically cho-

sen by unbiased risk estimation—a technique similar to
Mallows’ Cp [22].

Risk3 5
1

n1n2
E FO

s,t
(( fst 2 f̂st)/ fst)2G, The procedure estimates a spectrum by applying

weighted local smoothing to its corresponding periodo-
gram. The estimator is defined as

with Risk2 receiving primary attention in the literature.
Notice that Risk2 and Risk3 are locally equivalent as

f̂st 5 Op
i52p

Oq
j52q

wij Is1i,t1j , (s, t) [ A, (4)log(1 1 x) P x for small x. However, for the current pur-
pose (i.e., any SGRFs simulated from the estimates f̂st’s
should look like and possess roughly the same statistical where 2p 1 1 and 2q 1 1 are the spans for smoothing in
properties of the observed image), it is argued that one the s- and t-directions, respectively, and wij , i 5 2p, . . . ,
should use the risk function Risk1 rather than Risk2 or p, j 5 2q, . . . , q are nonnegative weights satisfying
Risk3 . The reasons are:

w ui u, u j u 5 wij and O
i, j

wij 5 1.1. Many image textures (and certainly those that can be
modeled as SGRFs) are relatively continuous and devoid
of edges. Consequently, in such image textures, most of

The weight at the center w00 should also be a decreasingthe power is concentrated in the low frequency region of
function of p and q. These conditions are satisfied by almostthe spectrum. However, the risk functions Risk2 and Risk3 all suitably discretized kernel functions commonly used forimplicitly allocate more weight to frequencies with small
multivariate kernel smoothing (e.g., see [41, Chap. 4]). Inmagnitudes than does Risk1 , and typically in Gaussian
this paper we shall use the weightsimage textures these small magnitude frequencies are con-

centrated in the high frequency region of the spectrum
(this situation is accentuated in 2D data because the pro- wij 5 w9i j SO

u,v
w9uvD21

, w9uv 5
2

fpq S1 2
u2

p2 2
v2

q2D
1
, (5)

portion of high frequencies there is much higher than in
1D data). Consequently, Risk2 and Risk3 primarily mea-
sure the quality of fit of the high frequencies in Gaussian for i, u 5 2p, . . . , p and j, v 5 2q, . . . , q, and (x)1 means

max(x, 0). These weights can be seen as a discrete versionimage textures, while Risk1 primarily measures the quality
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of the optimal weight function derived in [11]. One can is an unbiased estimator of Risk1(p, q), and it is proposed
to choose the minimizer (p, q)UR of Riskˆ

1(p, q) as thecertainly use other weights but the gain (if any) is expected
to be minimal, as it is widely known that the choice of spans.

We close this section with the following remark aboutthe kernel/weight function in the nonparametric kernel
smoothing context is not an important issue. For example the practical implementation of the procedure. Since esti-

mator (4) is a convolution operation, when n1 and n2 aresee [36, Chaps. 3 and 4] and [41, Chap. 4].
The weights wij’s certainly depend on p and q. However large (which is typical for image data), a substantial saving

of computation time can be made if the estimates f̂st’s arefor the sake of clarity, this dependence is suppressed in
the notation of wij’s. Since the spectrum is periodic with computed via the Fourier domain, especially when p and

q are large (e.g., see [33, Chap. 2]). The use of the Fourierperiod 2f, boundary points in (4) are handled by peri-
odic smoothing. method in this situation would not introduce any boundary

problems, as the spectrum is periodic. Also, by Parseval’sFor the estimator defined in (4), there are two smoothing
parameters (p and q) independently controlling the theorem, the residual sum of squares (RSS) can be ex-

pressed in terms of the Fourier transforms of f̂st’s and Ist’s.amount of smoothing in each coordinate direction. In fact,
as discussed in [40], up to three independent smoothing This means when one is searching for p and q to minimize

Risk1(p, q), there is no need to invert the Fourier transformparameters can be incorporated for the smoothing of a
two-dimensional surface: two for direction and one for to obtain each f̂st .
orientation. This paper also concluded that a kernel-type

3.2. Some Smoothing Procedures Based on theestimator should have the ability to smooth independently
Log-Periodogramby different amounts in each direction (such as (4)), and

it is quite often that this will provide satisfactory perfor- An analogous procedure similar to the one described
mance. above can be developed for log-periodogram smoothing.

Now we address the issue of how to choose (p, q). As This procedure naturally uses Risk2 as the risk function to
discussed in Section 2, (p, q) should be chosen to minimize measure the quality of fit. Assume the spectrum is strictly
the risk function Risk1 , henceforth written as Risk1(p, q) positive and define yst 5 log Ist 1 0.57722. Then under the
to indicate that it is a function of (p, q). Since Risk1(p, q) additive model (3), E(yst) 5 log fst , and thus fst can be
is unknown, a standard approach is to form an unbiased estimated by
estimator of Risk1(p, q) and choose (p, q) to minimize
this risk estimator. For the smoothing of one-dimensional

f̃st 5 exp(g̃st), g̃st 5 Op9

i52p9

Oq9

j52q9

wij ys1i,t1j , (s, t) [ A, (7)periodograms, [14] mentioned the use of cross-validation
(apparently it is presented in the technical report [27],
which we are unable to obtain), and it can be generalized

with the spans (p9, q9) chosen as the minimizer (p9, q9)UR ofto the present setting: (p, q) is chosen to be the minimizer
of the cross-validation score

Riskˆ
2(p9, q9) 5

o(yst 2 g̃st)2

n1n2
2

(1 2 2w00)f 2

6n1n2
.

CV(p, q) 5
RSS

n1n2(1 2 w00)2 ,

Using the same technique as in Appendix A, one can show
that Riskˆ

2 is an unbiased estimator of Risk2 (under modelwhere RSS 5 o(Ist 2 f̂st)2 is the residual sum of squares.
(3)). As for those f̂st’s, fast computation of g̃st’s is madeHowever, it is straightforward to show that CV(p, q) is
possible by Fourier methods.biased when n1 and/or n2 are finite. It is known that for

Since the errors are additive, other fast spatial smootherslow-dimensional parameter estimation problems, biased
(which assume additive errors) can be applied to smoothestimators could potentially lead to serious estimation er-
the yst’s (and the natural risk function to be minimized isrors. Therefore even though there is no rigorous analysis
Risk2). Berman [1] and Buckley [5] demonstrated that fastshowing that the use of CV(p, q) as an estimator for
computations of the thin-plate smoothing spline can beRisk1(p, q) would suffer from similar problems, intuitively
performed for image data via the discrete Fourier trans-it is preferable to use an unbiased estimator for Risk1(p,
form and the discrete cosine transform, respectively. O’Sul-q). By using a technique similar to Mallows’ Cp , we are
livan [25] showed fast Laplacian smoothing can be achievedable to develop an unbiased estimator for Risk1(p, q) (un-
by using Fourier methods. As all the discussed smoothersder model (2)). It is shown in Appendix A that
can be computed via Fourier methods, it is expected that
their computation times are of the same order.

In order to study the relative performances of a kernelRiskˆ
1(p, q) 5

RSS
n1n2

2
(1 2 2w00)

2n1n2
O
s,t

I2
st (6)

type smoother and a spline type smoother, and between the
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unbiased risk estimation choice and the cross-validation
choice of spans, we applied three smoothers to some com-
mon log-periodograms. These smoothers are estimator g̃st

in (7) with unbiased risk estimation choice of spans, estima-
tor g̃st in (7) with cross-validation choice of spans, and
Berman’s spline smoother. Berman’s spline smoother uses
generalized cross-validation to choose its smoothing pa-
rameter, which is equivalent to cross-validation for regu-
larly-spaced data. Provided that the amounts of smoothing
chosen by these three smoothers did not differ by too
much, the resulting smoothed periodograms gave similar
mean squared errors, and in fact for most cases, the
amounts of smoothing were well chosen (and similar) by
these smoothers. We believe that the lessons that can be
learned from this are that for the practical smoothing of
image data: (i) there is no significant difference between
using a kernel type or a spline type smoother and (ii) there
is no significant difference between using an unbiased risk
estimation (if the noise variance is known or can be well
estimated) or a cross-validation based approach for auto-
matic smoothing parameter selection. This is probably be-
cause for most image data, the total number of pixels is
large enough for these two types of ‘‘residual-based’’ ap-
proaches to perform well.

4. SIMULATION RESULTS

The aim of this section is to demonstrate that the risk
function Risk1 is preferable to Risk2 (which is locally equiv-
alent to Risk3) by means of a simulation study. Figure
2 displays a typical SGRF, observed in the square
[21, 1) 3 [21, 1) with a 256 3 256 discretization, generated
from the autocovariance function FIG. 3. Plots of various (a) autocovariance functions and (b) spectra.

All spectra are plotted on the log scale.

ckl 5 exp S210 !S k
128D2

1 4 S l
128D2D, (8)

for k, l 5 0, 61, 62, . . . . (Details of the simulation proce-
dure we used are given in Appendix B.) Notice that (8) is
not isotropic. For the range k 5 0, l 5 2128, . . . , 127, (8)
is plotted in Fig. 3(a), and the corresponding portion of
its spectrum is plotted in Fig. 3(b).

(All images in this paper are displayed after the follow-
ing transform is applied. First the mean e and the standard
deviation s of the gray values of an image are calculated.
Then those gray values below e 2 3.5s and above e 1
3.5s are set to e 2 3.5s and e 1 3.5s, respectively. Finally
all gray values are linearly stretched so that the minimum
and maximum values are 0 (black) and 255 (white), respec-

FIG. 2. A typical SGRF generated by autocovariance function (8). tively.)
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FIG. 4. Simulated SGRFs: (a) by the periodogram based procedure and (b) by the log–periodogram based procedure.

Here the SGRF displayed in Fig. 2 is the observed field. procedure (and other Risk2 type smoothers). We also
plotted the gray value densities of the observed andThe periodogram based smoothing procedure (4) with un-

biased risk estimation choice of spans (p, q)UR and the the two simulated SGRFs in Fig. 5. Again, this shows
that the periodogram based procedure is a better pro-log-periodogram based smoothing procedure (7) with un-

biased risk estimation choice of spans (p9, q9)UR were ap- cedure.
We have also performed the same experiment onplied to estimate the spectrum with common weights wij’s

given by (5). other 256 3 256 images with the autocovariance func-
tions:The estimated spectra together with their corresponding

estimated autocovariance functions (inverse Fourier trans-
forms of the estimated spectra) are also plotted in Fig. 3. ckl 5 exp(2200r 2),
From Fig. 3(b) we can see that the log-periodogram based

ckl 5 cos(10fr)/exp(5fr),procedure produces a spectrum which is oversmoothed in
the low frequency region. This is because Risk2 (the risk ckl 5 cos(10fr)/exp(2f 2r 2),
function which this log-periodogram based procedure aims
to minimize) substantially allocates more weight to the flat
and smooth high frequency region of the spectrum, and
this has caused the log-periodogram based procedure heav-
ily to smooth the log-periodogram in order to produce
smooth estimates of the high frequencies. Consequently,
the low frequency region has been severely oversmoothed.
We have observed the same phenomenon using other
smoothers whenever Risk2 is the risk function being mini-
mized. This oversmoothing in the low frequency region
drastically affects the quality of the estimated autocovari-
ance function; see Fig. 3(a).

With the two estimated spectra, we simulated two
SGRFs with the same random number generator seed that
was used to simulate the original observed SGRF displayed
in Fig. 2. That means, if a spectrum is perfectly estimated,
the simulated SGRF would be identical to the observed
one. The two simulated SGRFs are displayed in Fig. 4. By
visual judgment it can be concluded that the periodogram

FIG. 5. Densities of various SGRFs.based procedure is superior to the log-periodogram based
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where neighbors. The brightness of a path is the sum of the gray
values of the corresponding pixels in the image. That is,
the smaller the sum, the darker (on average) the path

r 5 !S k
128D2

1 S l
128D2

. is. The darkest path is defined as the path with the least
brightness (if there is more than one path having the same
least brightness, randomly select one as the darkest path).

In each case, we obtained analogous results. A fast and reliable method that uses a dynamic program-
One of the referees of this paper suggested that Risk1 ming algorithm to find the darkest path in an image is

may appear to be preferable to Risk2 because we are work- described in [32].
ing with gamma corrected images. To test this hypothesis, We applied the stationarity transform (9) to the two
we compared the Risk1 and Risk2 based techniques on borehole images (with s1 5 13 and s2 5 21) displayed in
some images which were not gamma corrected. Our empir- Fig. 1. We also applied the method described in [32] to find
ical results for these images still support the use of Risk1 . the darkest paths of the two transformed images. These two

images with their darkest paths overlaid are displayed in
5. AN APPLICATION TO HYPOTHESIS TESTING Fig. 6.

Now the only remaining problem is to construct a proce-
As mentioned in Section 1, one of the motivations for dure for testing whether a detected darkest path of an

our work is the need for a method for the automatic testing image is in fact a crack or not. Perhaps the simplest test
of the presence of cracks (or other features) in images, is by the method of thresholding: compare the darkest
such as those displayed in Fig. 1. We adopted the following path’s brightness with a prechosen threshold. If the bright-
strategy: first find the vertical darkest path (defined below) ness is less than the threshold, then this darkest path is
in a borehole image and then test if this darkest path is classified as a crack. However, these sorts of thresholding
‘‘dark enough’’ to be classified as a crack. Since images techniques are not robust to changes in texture, and a more
might have been captured under unstable lighting condi- reliable testing procedure can be constructed using Monte
tions (therefore they are not stationary and may have dif- Carlo testing.
ferent gray value distributions, as demonstrated in Fig. 1), Suppose T is the stationarity transformed image we
it is often that an illumination correction transform is first would like to test. The first step of the procedure is to
applied to the images to make them stationary before any use the spectrum estimator developed in Section 3.1 to
further processing is carried out. If necessary, the station- estimate the spectrum of T as if there are no cracks in T.
ary image should also be transformed pixelwise to ensure Since it is quite often the case that the number of ‘‘non-
that the image histogram is approximately Gaussian. background pixels’’ in an image with a small number of

A simple but effective formula for transforming an image cracks is only a small fraction of all the pixels in the image,
a 5 (a1, . . . , an) to a stationary image b 5 (b1, . . . , bn) is it is reasonable to expect these ‘‘nonbackground pixels’’

would not substantially worsen the estimation result. Then
with the estimated spectrum, simulate m different imagebi 5

20(ai 2 smed(ai))
lsd(ai)

1 128, (9)
backgrounds, and for each of these simulated backgrounds,
calculate the brightness of its darkest path. These m differ-

where smed(ai) is the separable median (defined below) ent simulated backgrounds should resemble the back-
of gray values in the rectangle of size s1 rows by s2 columns ground of T. Figure 7 displays two typical simulated image
centered at pixel i, and lsd(ai) is a robust estimate of the backgrounds for the two stationarity transformed borehole
local standard deviation of the same rectangle: images (without their darkest paths) displayed in Fig. 6.

Therefore there will be m different simulated darkest path
lsd(ai) 5 smed(uai 2 med(ai)u). brightnesses, and the final step is to compare the brightness

of the darkest path of T with these m simulated bright-
nesses. If the darkest path’s brightness in T is among theThe separable median in a rectangle is defined as the me-

dian of all the row medians in that rectangle. Narendra smallest of all simulated brightnesses, then there is strong
evidence that the darkest path of T is in fact a crack.[24] showed that the separable median filter can be com-

puted faster and preserves corners better than the tradi- We applied the above testing procedure to the two sta-
tionarity transformed borehole images with m 5 99. Thetional two-dimensional median filter. Formula (9) usually

returns bi’s that are within the range [0, 255]. brightness of the darkest path of the image in Fig. 6(a) is
in fact smaller than all its simulated brightnesses, and henceHere we give the definition of a vertical darkest path (a

horizontal darkest path can be similarly defined). A vertical one can conclude with confidence that the image in Fig.
6(a) contains at least one crack. For the image in Fig.path is a set of pixels, one per row, with the property

that pixels of this set in adjacent rows are 8-connected 6(b), the darkest path’s brightness is larger than 48 of
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FIG. 6. Stationarity transformed borehole images with darkest paths (in white) overlaid.

its simulated brightnesses. Hence one can conclude with Longstaff [26] have developed an analogous procedure
for texture synthesis using nonparametrically estimatedconfidence that there are no cracks in the image displayed

in Fig. 6(b). Markov random fields. These authors applied their proce-
dure to textures 3 and 4 and obtained successful results.
However the time required for their approach to synthesize6. WHEN ARE SGRFs APPROPRIATE

FOR TEXTURE MODELING? one texture image (or more precisely, to simulate one
Markov random field) is enormous: for a 128 3 128 image,

The technique developed in this paper strongly relies it takes 3 to 4 h on a parallel machine, while for our
on the assumption that the target textures can be well approach, it takes less than 1 s user time on a Sparc-10
modeled by SGRFs. In this section we briefly investigate workstation to synthesize a same-sized image (i.e., a
the applicability of this assumption by applying the tech- SGRF) using the method briefly outlined in Appendix B.
nique to synthesize some Brodatz textures [4].

Brodatz textures are widely used in the image processing 7. DISCUSSION AND CONCLUSION
literature as standard texture examples. For example see
[6], [16], [26], [29], [39], and references given therein. We In this article we have demonstrated that, in the context

of stationary Gaussian texture simulation, the choice ofapplied our technique to estimate the spectra of some
Brodatz textures, and from these estimated spectra we risk function for evaluating estimate quality is important:

Risk1 should be taken as the risk function. We have pro-synthesized some textures. The results are displayed in
Figs. 8 and 9. posed an automatic and nonparametric spectrum estima-

tion procedure which aims to minimize Risk1 . In addition,For textures 1 and 2, our technique performed reason-
ably well. However, for textures 3 and 4, our technique we illustrated via an example how the proposed technique

can be combined with Monte Carlo testing to tackle targetgave poor results. This is probably because SGRFs are
very poor at capturing discontinuous structures. Paget and testing problems.

FIG. 7. Two typical simulated image backgrounds for images in Fig. 6(a) and Fig. 6(b).
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FIG. 8. Comparison of real and synthesized Brodatz’s textures: results satisfactory. (a) real texture 1, (b) synthesized texture 1, (c) real texture
2, and (d) synthesized texture 2.

In this example, our estimate of the spectrum is based able additional research to extend to two dimensions suc-
cessfully.on the assumption that the target feature (in our case a

crack) is not present in the image. Some simulations that
APPENDIX A: DERIVATION OF Riskˆ

1(p, q)we have performed suggest that, provided the feature cov-
ers only a small proportion of the image and does not have

The aim of this appendix is to show that the risk estima-characteristics producing spikes in the spectrum (e.g., a
tor Riskˆ

1(p, q) defined by (6) is an unbiased estimator ofstraight line), the estimated spectrum is not very different
Risk1(p, q). We begin by calculating E(RSS):from that obtained when the feature is absent. However,

one can clearly envisage situations when the feature may E(RSS) 5 E O
s,t

(Ist 2 f̂st)2

be more extensive or has special characteristics. If these
characteristics are known, this knowledge should be incor-

5 O
s,t

E(I2
st 2 2Ist f̂st 1 f̂ 2

st).porated in the estimation procedure. If not, a more robust
spectrum estimator may be required. There has been some
research carried out on robust estimation of 1D spectra Since the «st’s are independent standard exponentials

(E(«st) 5 1 and E(«2
st) 5 2), then E(Ist) 5 fst , E(I2

st) 5(e.g., [23]). However, these techniques are far more compli-
cated than ours, and, in our view, would require consider- E( f 2

st «
2
st) 5 2 f 2

st , and
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FIG. 9. Comparison of real and synthesized Brodatz’s textures: results unsatisfactory. (a) real texture 3, (b) synthesized texture 3, (c) real texture
4, and (d) synthesized texture 4.

Therefore
E(Ist f̂st) 5E Sfst «st Op

i52p
Oq

j52q
wij fs1i,t1j «s1i,t1jD

E(Ist 2 f̂st)2 5 2f 2
st 2 2(w00 f 2

st 1 fst E( f̂st)) 1 E( f̂ 2
st)

5 E( fst 2 f̂st)2 1 (1 2 2w00) f 2
st

5 E Sw00 f 2
st «

2
st 1 O

i?0
O
j?0

wij fst«st fs1i,t1j «s1i,t1jD
and

5 2w00 f 2
st 1 O

i?0
O
j?0

wij fst fs1i,t1j

E(RSS) 5 n1n2 Risk1(p, q) 1 (1 2 2w00)E SO
s,t

1
2

I2
stD.

5 w00 f 2
st 1 Op

i52p
Oq

j52q
wij fst fs1i,t1j Thus

5 w00 f 2
st 1 fst Op

i52p
Oq

j52q
wij fs1i,t1j Riskˆ

1(p, q) 5
RSS
n1n2

2
(1 2 2w00)

2n1n2
O
s,t

I2
st (10)

5 w00 f 2
st 1 fst E( f̂st). is an unbiased estimator of Risk1(p, q).
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