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Segmenting Images
Corrupted by Correlated Noise

Thomas C.M. Lee, Member, IEEE

Abstract—Image segmentation is fundamental to many image analysis problems. It aims to partition a digital image into a set of
nonoverlapping homogeneous regions. The main contribution of this paper is the development of a new segmentation procedure
which is designed to segment images corrupted by correlated noise. This new segmentation procedure is based on Rissanen’s
minimum description length (MDL) principle and consists of two components: i) an MDL-based criterion in which the “best”
segmentation is defined as its minimizer and ii) a merging algorithm which attempts to locate this minimizer. The performance of this
procedure is illustrated via a simulation study, with promising results.

Index Terms—Correlated noise, image segmentation, merging algorithm, minimum description length.
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1 INTRODUCTION

MAGE segmentation is fundamental to many image
analysis problems. It aims to partition a digital image

into a set of nonoverlapping regions, in such a way that
these segmented regions possess the following properties:

1)�pixels within the same region are homogeneous with
respect to some characteristic (e.g., gray value or tex-
ture); and

2)�pixels of neighboring regions are significantly differ-
ent with respect to the same characteristic (see [11,
Chapter 10] and [10, Chapter 4] for references and
some general discussion of these issues).

The image characteristic as the basis for segmentation with
which this paper is concerned is gray value.

One popular approach to segmenting an image based on
gray value is to approximate the image by a two-
dimensional (2D) piecewise smooth function and define the
segmentation by the discontinuity points of the 2D piece-
wise smooth function. For example, see [3], [4], [5], [7], [9],
[14], [15], [17], [18], [19], [24], and [26]. In this paper, images
that can be well modelled by 2D piecewise constant func-
tions (PCFs) corrupted by additive Gaussian noise will re-
ceive primary attention. The main contribution here is the
development of a new segmentation procedure which is
designed to segment such images when the noise is corre-
lated. The proposed segmentation procedure is based on
Rissanen’s minimum description length (MDL) principle
[22] and consists of two components:

1)�an MDL-based criterion in which the “best” segmen-
tation is defined as its minimizer and

2)�a merging algorithm which attempts to locate this
minimizer.

To the best of our knowledge, this is the first time that, for
the piecewise smooth function modelling approach to the
problem of image segmentation, the effect of noise correla-
tion has been taken into account.

In some recent papers, the MDL principle has been ap-
plied to the problem of image segmentation, e.g., see [18],
[15], [27], [19] and references given therein. The key differ-
ence here is that, all such previous work only considered
independent noise. A more thorough comparison is given in
Section 5.

The rest of this paper is organized as follows. Section 2
defines the problem that we consider. Section 3 briefly de-
scribes some previous relevant results. Section 4 presents
the proposed segmentation procedure. Section 5 compares
the proposed procedure with other MDL-based segmenta-
tion procedures. Section 6 reports the results of a simulation
study, and Section 7 discusses possible extensions to the
proposed procedure.

2 PROBLEM FORMULATION

As suggested before, we model images by 2D PCFs cor-
rupted by additive Gaussian noise. Let f = (f1, …, fn)T be a
discrete version of an arbitrary 2D PCF with k constant re-
gions and n pixels. Denote the gray value of the jth region
as µj, j = 1, …, k, and write m = (µ1, …, µk)

T. Then f can be
represented by:

f I i ni j i r
j

k

j
= =

∈
=
∑ µ

J L1

1, , ,K

where “i ∈ rj” means “the ith pixel is in the jth region,” and
IE is the indicator function for the event E. Notice that we
have chosen to use single indexing rather than double in-
dexing for labelling pixel coordinates. Also notice that in
our formulation for f, region boundaries are composed of
horizontal and vertical “edges” between pixels. For con-
venience, we define W = {r1, …, rk} as the set of all region
boundaries, i.e., W defines a partition of the image.
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Our aim is, given an observed image y = (y1, …, yn)T sat-
isfying the model

y f i ni i i= + =e , , ,1 K ,

where the eis are zero mean Gaussian random errors, to

obtain an estimate $f  for f, and define our segmentation of
the image by the boundaries separating all constant regions
(i.e., all discontinuity points) of $f . We will apply the MDL

principle to obtain such an estimated/fitted 2D PCF $f .
Briefly, the MDL principle defines the best-fitted model

as the one that enables the best compression/encoding of
the data, so that the data can be transmitted in the most
economical way. In the present situation, the data is the
image to be segmented and a fitted model is simply a fitted
2D PCF (i.e., a segmentation) of the image. That is, the best
fitted model/segmentation is the one that produces the
shortest code length of the data/image. A typical code
length formula usually consists of two parts:

1)� the code length for specifying a fitted model plus
2)� the code length for specifying the data “conditioning

on” the fitted model (i.e., the residuals).

3 MDL-BASED SEGMENTATION FOR INDEPENDENT
NOISE

The correlated noise segmentation procedure to be pro-
posed in Section 4 is a modification of the segmentation
procedure proposed in [19]. That procedure has been con-
structed for segmenting images corrupted by independent
and identical Gaussian noise eis with variance σ2. For con-
venience, we state the relevant results in [19].

3.1 MDL Criterion for Independent Noise
We first state the result regarding the code length formula
for encoding an image (PCF) corrupted by independent
noise. We need some notation to proceed. Suppose a fitted
2D PCF is given. Let $k  be its estimated number of regions,
$ $ , , $$W = r r

k1 KJ L be the set of all its estimated region bounda-

ries (i.e., discontinuity points), and $ $ , , $ $m = µ µ1 K
k

T4 9  be its

estimated region gray values. If aj and bj are, respectively,
the area (in terms of number of pixels) and perimeter (in
terms of number of pixel edges) of the jth region of $W , then
it is shown in [19] that

             MDLIND
$, $ $ log
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k k n bj
j

k
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=
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is an approximation to the desirable code length formula.
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It was proposed in [19] to select the minimizer of

MDLIND
$, $k W4 9  as the “best” fitted model, or segmentation,

of an image corrupted by independent noise.

3.2 Merging Algorithm for Independent Noise

Global minimization of MDLIND
$, $k W4 9  is infeasible for im-

ages of a reasonable size. In [19] a fast merging algorithm
similar to those used in [6] and [15] is proposed. This
merging algorithm may miss the global minimum but is

guaranteed to find a local minimum of MDLIND
$, $k W4 9 .

The general idea of the merging algorithm is as follows.

It starts with computing the MDLIND
$, $k W4 9  value of an over-

segmentation of the image being segmented. Then at each
time step it chooses two neighboring regions and merges
them to form a new region. These two neighboring regions
are chosen in such a way that, when they are merged, it
provides the largest reduction in the current value of

MDLIND
$, $k W4 9  amongst all other possible merges. Such a

merging strategy is often called the “greedy” strategy. The
merging algorithm continues until there is only one region
left.

If there are K initial regions in the original oversegmen-
tation, then, when the algorithm finishes, K hierarchically
fitted models/segmentations are produced. The one that

has the smallest MDLIND
$, $k W4 9  value will be chosen as the

best fitted model/segmentation.
Also given in [19] are some fast updating formulae for re-

cursively computing MDLIND
$, $k W4 9  as k decreases, and a

practical method for obtaining a reasonable oversegmentation.

4 MDL-BASED SEGMENTATION FOR CORRELATED
NOISE

This section presents the main contribution of the paper:
We modify the independent noise MDL criterion

MDLIND
$, $k W4 9  (1) to handle images corrupted by correlated

noise. We also develop a merging algorithm which does not
use the greedy merging strategy to approximate the corre-
sponding minimum. We concentrate on the case when the
noise can be well modelled by some zero-mean stationary
Gaussian random field (SGRF). That is, we assume an ob-
served image is a 2D PCF with an SGRF superimposed.

The main modification to MDLIND
$, $k W4 9  is to replace the

last term n
k

RSS n2 log $4 9  by 1
2 log $S , which corresponds to

the code length for encoding the data conditioning on a
fitted model (i.e., the residuals). Here $S  is the maximum
likelihood estimate of the autocovariance matrix S  of the
correlated noise (which we model by a SGRF) and $S  is its

determinant. The second modification to MDLIND
$, $k W4 9  is

to add the code length that is required to specify $S . If we
restrict all possible 2D autocovariance functions which give
rise to S  to have the same parametric form, $S  can be com-
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pletely specified by the estimates of the unknown parame-
ters of that parametric form. In this case, as the number of
unknown parameters is fixed, the code length for specify-
ing $S  is constant and so can be ignored. In fact this is the
route that we follow below, and the new MDL criterion
constructed for handling correlated noise is

MDLCOR
$, $ $ log

log
log log $

$ $

k k n b aj
j

k

j
j

k

W S4 9 = + + +
= =
∑ ∑3

2
1
2

1
2

1 1

 (3)

with $S  to be specified below. In Section 7.4 we will briefly
discuss the case when the autocovariance functions can
possess different parametric forms. Since the SGRF is as-
sumed to have a zero mean, estimates of the µjs and fjs are
also given by (2).

4.1 Choice of Parametric Form for Autocovariance
Functions

It is desirable that one can arbitrarily specify the parametric
form of the possible autocovariance functions to handle the
noise patterns/textures of the images being segmented.
Unfortunately this is infeasible because of various compu-
tational difficulties. (For related work on texture classifica-
tion, consult, for example, [21] and [25].)

Finding or approximating the minimum of the correlated
MDL criterion (3) requires repeated computations of log $S ,

which means fast methods for computing log $S  are neces-

sary. This is made difficult by the huge size of $S : for an im-

age of size nr  × nc, $S  is of size nrnc  × nrnc. Even the real
memory space of a reasonable workstation cannot store the
whole $S  for an image of a reasonable size. Also, unlike

log $RSS
k4 9 in the independent case, generally no fast up-

dating formulae exist for the computation of $S  and log $S .

Thus, we see two main constraints restricting the choice of a
parametric form for the autocovariance:

1)�fast methods for estimating the parameters of the
parametric form should exist, i.e., a reasonable esti-
mate of $S  should be obtained quickly; and

2)�fast and accurate approximations for log $S  should

also exist.

Here we propose using the following three-parameter sepa-
rable anisotropic exponential autocovariance parametric form:

acv r c A r c r
n n

r r c c
r r, exp , , , ,0 5 2 7= − − =

−
−α α∆ ∆ 2 2 1K

c
n nc c=

−
−2 2 1, ,K ,                             (4)

where ∆r and ∆c are the sampling intervals in the row and

column directions respectively, nr × nc is the dimension of

the image (i.e., nrnc  = n), and A > 0, αr > 0, and αc  > 0 are
parameters. This sort of separable exponential autocovari-
ance function was commonly used in the early days for
image representation and compression (e.g., see [13, Chap-

ter 6]). In this paper we assume both nr and nc are even, and

images are observed in the square [−1, 1) × [−1, 1). Thus ∆r =

2/nr and ∆c = 2/nc.

4.2 Parameter Estimation

The MDL principle suggests that the parameters A, αr, and

αc should be estimated by the method of maximum likeli-
hood. However, such maximum likelihood estimates often
require iterative methods to compute, and these iterative
methods typically take a long time to converge. This would
make our segmentation method impractical. Below we

suggest fast methods for estimating A, αr, and αc.

Denote the residuals by $ $e y fi i i= −  for i = 1, …, n. We es-
timate A by

$ $ $A n e RSS ni k
i

n

= =
=
∑1 2

1

.

Our estimators for αr and αc are approximate method-of-
moments estimators. We first use the approximation
exp(x) < 1 + x for small x to write

acv(r, c) = A exp (−αr∆r|r| − αc∆c|c|)

 < A − Aαr∆r|r| − Aαc∆c|c|

for small |r| and |c|. Define the variogram v(r, c) as:

v(r, c) = 2(acv(0, 0) − acv(r, c))

 < 2A(αr∆r|r| + αc∆c|c|).

Then we have

α αr
r

c
c

v
A

v
A≈ ≈

1 0
2

0 1
2

, ,2 7 2 7
∆ ∆and

and, hence, one can estimate αr and αc by first estimating
v(1, 0) and v(0, 1). Define the following two sets

Sr = {(i, j) : pixel j is the immediate right neighbor of pixel i},

Sc = {(i, j) : pixel j is the immediate bottom neighbor of pixel i}

and let |Sr| and |Sc| be the number of elements in Sr and
Sc, respectively. Then v(1, 0) and v(0, 1) can be estimated
rapidly by

$ , $ $ $ , $ $
, ,

v S e e v S e er i j
i j S

c i j
i j Sr c

1 0 0 1
1 2 1 22 7 4 9 2 7 4 9
1 6 1 6

= − = −
−

∈

−

∈
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and so αr and αc can be estimated by

$
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Notice that fast updating formulae for computing $ ,v 1 02 7
and $ ,v 0 12 7  exist.

4.3 Fast Approximation for log $S
In this subsection, we develop a fast approximation for
log $S  when the underlying autocovariance function is of

the parametric form (4). We first consider the 1D autoco-
variance function
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γ γ αu u A u u= = − = ±∆ ∆2 7 2 7exp , , , ,0 1 K

where A and α are parameters, and ∆ is the sampling inter-
val. Let

F iuu
u

ω π γ ω ω π0 5 0 5 5= − ∈
=−∞

∞

∑1
2 0 2exp , ,

be the corresponding spectrum (in this subsection i = −1),

and let τ2 be the innovation variance. Because γ(t) is the
autocovariance of an AR(1) (autoregressive of order 1) pro-
cess, we have

γ γ
τ

α
τ α0 0

2
2

1 2
1 2= =
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∆
∆0 5 0 52 7
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π α ω
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log logF dω ω π τ
π 0 5
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2 22=

Now using the results that the determinant of a matrix
equals the product of all its eigenvalues (denote the eigen-

values by λks), and that the eigenvalues of the autocovari-

ance matrix S of a stationary process with n observations

are approximately given by λk = F(2πk/n), k = 0, …, n − 1,
we have

log logS =
=

−

∏ λ k
k

n

0

1
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=

−

∑ log λ k
k

n
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1

                                                ≈
n
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π ω ω
π
log 0 5

                                               =
n

2 2 2

π π τlog

                                               = − −n Alog exp1 2α∆0 52 7 .
The separable parametric form (4) is simply a product of γus
and, thus, by similar arguments one can derive the follow-
ing approximation:

log $ log $ exp $ exp $S ≈ − − − −n n Ar c r r c c1 2 1 2α α∆ ∆2 73 8 2 73 8   (5)

4.4 MDL Criterion for Correlated Noise
Combining (3) and (5) we obtain the following correlated
noise MDL criterion specialized to the autocovariance
parametric form (4):

MDLCOR
$, $ $ log

log
log

$ $

k k n b aj
j

k

j
j

k

W4 9 = + +
= =
∑ ∑3

2
1
2

1 1

+ − − − −
n

A r r c c2 1 2 1 2log $ exp $ exp $α α∆ ∆2 73 8 2 73 8   (6)

We propose to choose our best fitted model for images cor-
rupted by correlated noise as the minimizer of

MDLCOR
$, $k W4 9 , and define our segmentation by its discon-

tinuity points (i.e., boundaries separating all constant re-

gions). Notice that MDLCOR
$, $k W4 9  converges to the inde-

pendent noise criterion MDLIND
$, $k W4 9  (1) when both $α r

and $α c  approach infinity.
If the noise structure of the image to be segmented is un-

known, an obvious question to ask is: When should the

independent criterion MDLIND
$, $k W4 9  be used and when

should the correlated MDLCOR
$, $k W4 9  be used? We will ad-

dress this issue in Section 7.6.

4.5�Modified Merging Algorithm
A modified merging algorithm is also developed to ap-

proximate the minimizer MDLCOR
$, $k W4 9 . This correlated

noise merging algorithm also begins with an oversegmen-
tation of the image being segmented. However, at each time
step, it does not adopt the natural idea to merge the pair of
neighboring regions that produces the largest reduction in

MDLCOR
$, $k W4 9 . Instead, it merges the pair that produces

the largest reduction in MDLIND
$, $k W4 9 . That is, the corre-

lated noise merging algorithm uses the independent greedy
merging strategy, but not the correlated greedy merging strat-
egy. Thus it gives the same sequence of nested segmenta-
tions as the independent case algorithm. The main differ-
ence is that, it picks the segmentation from this nested se-

quence that has the smallest value of MDLCOR
$, $k W4 9  as the

final segmentation.
There are two strong reasons for not using the correlated

greedy merging strategy. Firstly the time required for com-
puting log $S  is (relatively) much longer than for comput-

ing log $RSS
k
, even though we have a fast approximation for

log $S . Thus at each time step finding the region pair that

gives the best reduction in MDLIND
$, $k W4 9  is much quicker

than finding the pair giving the best reduction in

MDLCOR
$, $k W4 9 , especially when the number of possible

pairs to be compared is large. This greatly improves the
speed performance of the correlated noise merging algo-
rithm. Our empirical experience suggests that, if the image
model assumption is correct (i.e., a 2D piecewise constant
function with a SGRF generated by the autocovariance
function (4) superimposed), both the correlated and inde-
pendent greedy merging strategies often produce nearly
identical sequences of nested segmentations. Hence there is
not much gain in segmentation performance by using the
correlated greedy merging strategy, but the gain in speed
resulting from using the independent greedy merging strat-
egy is enormous.

The second reason is as follows. When the segmentation
sequences produced by the two merging strategies are in-
deed different, empirical observation suggests that the se-
quence resulting from the correlated greedy strategy would
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be most likely worse than the one resulting from the inde-
pendent greedy strategy. This can be attributed to the fact
that in some step(s) of the merging algorithm, the corre-
lated greedy strategy would choose to merge a pair of two
small neighboring regions belonging to two different true
regions even if there are other more appropriate pairs
available for merging. The independent greedy strategy
seldom does this. These situations are more common when
the image model assumption is wrong. We believe the rea-
son for this is as follows. Merging two regions belonging to
two different true regions would make all the residuals of
one region shifted up by a constant and the residuals of
the other region shifted down by another constant. As a
result of these shifts, residuals of the same region are
(much) more correlated and hence give smaller values of
$α r  and $α c . The value of $A  would also be (slightly) in-

flated by such a mismerge. When the effect of having
small values of $α r  and $α c  is dominant in the computation

of log $ log $ exp $ exp $S = − − − −A r r c c1 2 1 2α α∆ ∆2 73 8 2 73 8 , a po-

tentially largest reduction in MDLCOR
$, $k W4 9  may result,

which would suggest a bad merge. Section 7.5 provides
some timing figures.

5 COMPARISON WITH CLOSELY RELATED WORK

Leclerc [18] and Kanungo et al. [15] have applied the MDL
principle to the problem of image segmentation, with the
latter work being closer to ours. Both Leclerc and Kanungo
et al. only consider the case of independent Gaussian noise,
but allow the underlying true image to be piecewise poly-
nomial and different regions to have different noise vari-
ances (i.e., spatial varying noise). They also claim that a
maximal degree of two (i.e., quadratic) is sufficient for
piecewise polynomial surfaces to approximate most images.

To find or approximate the minimum of their MDL crite-
ria, Leclerc uses a minimization procedure which is con-
tinuous in nature while Kanungo et al. use a stepwise re-
gion-merging algorithm similar to ours. Leclerc’s procedure
is less likely to miss the global minimum but is more time
consuming.

These authors also considered other extensions. Leclerc
modified his MDL criterion to handle images which are
blurred by a known point spread function. Kanungo et al.
developed an MDL-based segmentation procedure for
multiband images: a multiband image can be treated as a
stack of possibly correlated grayscale images. The multi-
band segmentation procedure of Kanungo et al. assumes
the noise is independent within bands but is correlated
across bands. Our correlated noise segmentation procedure
can also be extended to handle multiband images; see [20].

Recently, Zhu and Yuille [27] proposed a new two-stage
algorithm, called region competition, for approximating the
minimum of an MDL or a Bayesian based criterion for im-
age segmentation. These authors claim that their region
competition algorithm generalizes other segmentation algo-
rithms such as region growing, snake and balloon methods,
and in particular, they constructed such a region competi-
tion algorithm for a modified version of Leclerc’s MDL cri-

terion. They also considered the problem of segmenting
multiband images.

6 SIMULATION STUDY

This section reports results of a simulation study which was
conducted to evaluate the performance of the proposed
correlated noise segmentation procedures.

6.1 Settings
The test image (i.e., the true but unknown image) used
throughout the whole simulation study is displayed in
Fig. 1. It is composed of 111 distinct regions and is of di-
mension 512 × 512. It is a realization generated from a
model constructed for real aluminium grain images; see
[20] for details.

Our simulated noisy images (i.e., the observed images)
were then obtained by adding various Gaussian noise pat-
terns/textures to the test image. Fig. 2 displays some typi-
cal noise patterns/textures that we used.

In order to evaluate different segmentation results, we
will use Baddeley’s [2] binary image measure ∆w

p  to rank
these results. Also, throughout the whole simulation study
we used the seeded region growing [1] oversegmentation ap-
proach suggested by [19] to obtain initial oversegmenta-
tions with which to start the merging algorithm.

6.2 Correct Autocovariance Assumption
We tested the correlated noise segmentation procedure (i.e.,

the merging algorithm aims to minimize MDLCOR
$, $k W4 9

with images corrupted by correlated noise generated from
the autocovariance given by (4) (see Fig. 2b for an example).
We used three different “levels” of noise, which can be
characterized by different combinations of autocovariance
parameters (see Table 1). Also listed in Table 1 are the char-

acteristic lengths, ρr and ρc, in the r- and c-directions, respec-
tively. Here a characteristic length is defined to be the dis-

Fig. 1. Test image with true region boundaries (in white) overlaid. Since
in our formulation boundaries are composed of horizontal and vertical
“edges” between pixels, the actual boundaries cannot be exactly dis-
played in images. To deal with this problem, we has displayed all pixels
which have at least one of their four edges as part of a boundary.
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tance, in terms of number of pixels, that is required for the
effect of the noise correlation to drop by 50 percent.

For each parameter combination, we generated 100 noisy
observed images, and segmented these observed images
with the proposed correlated noise segmentation proce-
dure. We then computed, and for each combination, sorted
the values of ∆w

p  in ascending order.
Fig. 3 displays the segmentation results corresponding to

the 10th, the 51st, and the 90th smallest ∆w
p  values for pa-

rameter combination 1. These results are taken as typical ex-
amples of good, medium and poor segmentations, respec-
tively. Results for the remaining two parameter combina-
tions are displayed in a similar fashion in Fig. 4 and Fig. 5,
respectively. One can see that the proposed correlated noise
segmentation procedure generally performed well in our
simulations when the autocovariance assumption is correct.

6.3 Incorrect Autocovariance Assumption
In the previous subsection the correlated noise was gener-
ated from autocovariance functions satisfying our prior
assumption, that is, those autocovariance functions were of
the parametric form (4). It is interesting to know how well
(or bad) our correlated noise segmentation procedure per-
forms when the underlying noise autocovariance function
is not of the assumed parametric form (4). To investigate
this, we further tested our correlated noise segmentation
procedure with images corrupted by correlated Gaussian
noise generated from the following two autocovariance
functions:

1)�nonseparable exponential (see Fig. 2c for an example):

acv r c r cr c, exp0 5 2 7 2 7= − +�
! 

"
$#10 5 4

2 2
∆ ∆

with characteristic lengths ρr = 35.5 and ρc = 17.7, and
2)�bivariate Gaussian (see Fig. 2d for an example):

acv r c r cr c, exp0 5 2 7 2 7J L= − +�
! 

"
$#20 20 4

2 2
∆ ∆

with characteristic lengths ρr = 47.7 and ρc = 23.8,

TABLE 1
LEVELS OF NOISE

A αr αc ρr ρc

combination 1 20.0 5.0 20.0 35.5 9.0
combination 2 30.0 5.0 5.0 35.5 35.5
combination 3 10.0 10.0 5.0 17.7 35.5

         
                         (a)                                                       (b)                                                      (c)                                                     (d)

Fig. 2.  Various noise patterns/textures. (a) Independent noise. (b) Correlated noise with separable exponential autocovariance; see Section 6.2
combination 2 for exact formulation. (c) Correlated noise with nonseparable exponential autocovariance; see Section 6.3 for exact formulation.
(d) Correlated noise with bivariate Gaussian autocovariance; see Section 6.3 for exact formulation.

      
                                      (a)                                                                       (b)                                                                         (c)

Fig. 3. Simulation results for autocovariance parameter combination 1. (a) Observed image corresponds to good segmentation with segmented
region boundaries (in white) overlaid. (b) Similar to (a) but for medium segmentation. (c) Similar to (a) but for poor segmentation.
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where ∆r and ∆c are the sampling intervals in the row and

column directions, respectively, nr × nc is the dimension of

the image (i.e., nrnc = n), and r and c are indices: r = −nr/2,

…, nr/2 − 1, c = −nc/2, …, nc/2 − 1.
As before, for each autocovariance function, 100 simu-

lated segmentations were performed, and the correspond-
ing values of ∆w

p  were computed and sorted. We displayed
the relevant good, medium and poor segmentations in
Figs. 6 and 7.

Despite the fact that the noise autocovariance assump-
tion was wrong, our correlated noise segmentation proce-
dure generally produces satisfactory results (although, in
the case of the bivariate Gaussian autocovariance function,
some obviously spurious boundaries have been added). We
suspect the reason is as follows. Although the above non-
separable exponential and bivariate Gaussian autocovari-
ance functions are different to the separable exponential
autocovariance (4), their low frequency spectral behaviours
are similar. In the context of nonparametric curve estima-
tion with correlated noise, many asymptotic results demon-
strate that the important information carried by the ob-
served data is concentrated in the low frequency region of
the spectrum (e.g., [12] and references given therein). Thus

if such low frequency information can be well captured,
one would expect to have a good estimation performance.
This phenomenon appears to carry over to the present
situation, and hence explains why our correlated noise
segmentation procedure has produced satisfactory results
even though the autocovariance assumption is wrong.

6.4 Correlated Noise With Independence Assumption
and Vice Versa

Two important questions that one may ask are:

1)�how does the independent noise segmentation proce-
dure of [19] (the one that aims to minimize

MDLIND
$, $k W4 9  perform if the noise is in fact corre-

lated, and
2)�how does the proposed correlated noise segmentation

procedure (the one that aims to minimize

MDLCOR
$, $k W4 9  perform if the noise is in fact inde-

pendent?

In an attempt to answer these two questions, we applied
both the independent and the correlated noise segmenta-
tion procedures to simultaneously segment four noisy im-
ages. The results are displayed in Figs. 8 and 9. The first
noisy image is the test image displayed in Fig. 3a with in-

      
                                           (a)                                                                   (b)                                                                     (c)

Fig. 4. Similar to Fig. 3 except for correlated noise with autocovariance parameter combination 2.

      
                                           (a)                                                                  (b)                                                                     (c)

Fig. 5. Similar to Fig. 3 except for correlated noise with autocovariance parameter combination 3.
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dependent Gaussian noise superimposed. The signal-to-noise
ratio (snr) was 4.4 (we define snr = var(f)/σ2). The re-
maining three noisy images were selected from those gen-
erated in the previous two subsections. These three se-
lected noisy images were those giving rise to the medium
segmentations of:

1)� correlated noise with autocovariance parameter com-
bination 1 (see Fig. 3c);

2)� correlated noise with nonseparable exponential auto-
covariance (see Fig. 6c); and

3)� correlated noise with bivariate Gaussian autocovari-
ance (see Fig. 7c).

Recall that both the independent and the correlated
merging algorithms produce the same sequence of nested
segmentations, and that for each of these nested segmenta-
tions, the values of the relevant MDL criterion (either

MDLIND
$, $k W4 9  or MDLCOR

$, $k W4 9 ) are computed. For com-

parative purposes, we plotted the MDL values corre-
sponding to the four above-selected images in Fig. 10. For

convenience, we call MDLIND
$, $k W4 9  as a function of k an

MDL independent curve, and we define an MDL correlated
curve in an analogous manner.

Figs. 8 to 10 provide strong evidence that ignoring the
presence of positively correlated noise results in a serious
oversegmentation (of course this is not necessarily true if the
correlation is so weak that the noise can be treated as inde-
pendent). Figs. 8 to 10 also suggest that one should usually
use the correlated noise segmentation procedure (unless it is
known a priori that the noise is spatially independent), as it
did not produce any very poor results in our simulation
study, while the independent noise segmentation procedure
only performed well when the noise was independent (a
more thorough simulation study for the independent noise
procedure is given in [19]). However there are other situa-
tions when the independent noise segmentation procedure is
preferred. We defer our discussion of this issue to Section 7.5.

7 POSSIBLE EXTENSIONS AND DISCUSSION

We have already mentioned some possible extensions to the
MDL segmentation approach that have been suggested by
other authors: Perform piecewise polynomial fitting rather
than piecewise constant fitting; allow spatial varying inde-
pendent noise; account for the effect of blurring if the point
spread function is known; and extend the principle to
tackle multiband images. In this section, we discuss, and
further extend if possible, such extensions to our methods.

      
                                         (a)                                                                    (b)                                                                    (c)

Fig. 6. Similar to Fig. 3 except for correlated noise with nonseparable exponential autocovariance function.

      
                                         (a)                                                                      (b)                                                                   (c)

Fig. 7. Similar to Fig. 3 except for correlated noise with bivariate Gaussian autocovariance function.
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We also discuss other extensions and issues in relation to
our correlated noise procedure.

7.1 Piecewise Polynomial
Constructing MDL criteria for piecewise polynomial fitting
is straightforward: One just needs to derive the additional
code length for encoding estimates of the polynomial coef-
ficients. When using a merging algorithm to find a local
minimum, fast updating formulae exist for computing
polynomial coefficient estimates if the noise is independent
(e.g., see [15]). However, for the case of correlated noise,
such fast updating formulae may not exist. Besides, some-
times it is hard to distinguish between a smooth surface
and some “smoothly correlated noise”: They confound each
other. Thus extending our image model from piecewise
constant to piecewise polynomial may not produce any
practical MDL-based segmentation procedures.

7.2 Spatially Varying/Inhomogeneous Noise
Let us first consider the case of independent noise. Previous
work assumed that the noise within the same region is ho-
mogeneous (i.e., of constant variance). This assumption has
the nice property that it facilitates the development of fast
merging algorithms for finding minima. We can relax this
assumption at the expense of longer computation times. One
possible way to achieve this is that, at each time step of a new
merging algorithm, we segment the “residual image” (that is,
the image consists of $ $ , , ,e y f i ni i i= − = 1 K ) based on the

variance characteristic but not the gray scale, and define the
current “noise homogeneous zones” by the corresponding
variance segmentation of the residual image. Of course, such
a new merging algorithm needs more investigation and re-
finements to make it practical, and it would probably require
a long computation time to converge to a local minimum.

The above idea can also be applied to the case of corre-
lated noise. That is, the noise is modelled by a nonstationary
Gaussian random field. In this case we partition the resid-
ual image into different noise homogeneous zones such that
each noise homogeneous zone can be well modelled by a
stationary Gaussian random field. These noise homogene-
ous zones are probably restricted to having square or rec-
tangular shapes for fast implementation.

7.3 Blurring
Suppose that the observed image y is blurred by a known
point spread function K: It satisfies

y K f i ni j i j i
j Si

= + =+
∈
∑ e , , ,1 K ,

where the set {Kj} is a discrete version of K and Si defines

the spatial support of {Kj} for pixel i. Following Leclerc, we

can modify the independent noise criterion MDLIND
$, $k W4 9

to handle images blurred by K. This is done by replacing

RSS y f y K f
k i i

i

n

i j
j S

i j
i
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i
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                               (a)                                                   (b)                                                    (c)                                                 (d)

Fig. 8. Comparing independent and correlated noise segmentation procedures. (a) Independent noise image using independent procedure. (b)
Independent noise image using correlated procedure. (c) Correlated noise image with autocovariance parameter combination 1 using independ-
ent procedure. (d) Correlated noise image with autocovariance parameter combination 1 using correlated procedure.

         
                               (a)                                                  (b)                                                   (c)                                                   (d)

Fig. 9. Comparing independent and correlated noise segmentation procedures. (a) Correlated noise image with nonseparable exponential autoco-
variance using independent procedure. (b) Correlated noise image with nonseparable exponential autocovariance using correlated procedure.
(c) Correlated noise image with bivariate Gaussian autocovariance using independent procedure. (d) Correlated noise image with bivariate Gaus-
sian autocovariance using correlated procedure.
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Also, $fi  should be defined in a slightly different way to (2) to
account for the effect of the blurring (Leclerc did not address
this issue). Nevertheless, we can ignore this issue if it is as-
sumed that the size of K is small compared to the typical
sizes of the true regions (i.e., the “range” of blurring is small).

Leclerc’s idea can be extended to handle the case when K
is only known to have a fixed parametric form. This means
K can be completely specified by a (vector-valued) pa-
rameter b, and so is written as K(b). In this situation RSS

k$

should be replaced by

y K fi j i j
j Si

n

i

−
�
�
��

�
�
��+

∈=
∑∑ $ $b4 9

1

2

,

where $b  is an estimate (preferably the maximum likelihood
estimate) for b. However, one may have to restrict the
parametric form of K(b) in order to achieve fast computa-
tion of $b  and the resulting MDL criterion. This is in fact in a
similar spirit of the choice of the autocovariance parametric
form that we discussed in Section 4.1.

7.4 Other Forms of Correlated Noise
So far we have limited the noise autocovariance function to
have the parametric form (4). Ignoring computational is-
sues, there is no difficulty in extending the principle to
other autocovariance functions. The only change is to the
form of log $S  (see (3)). We can also extend the principle to

allowing the noise autocovariance function to have differ-
ent parametric forms. For example, we can model the noise
by 2D ARMA (autoregressive moving-average) models
(e.g., see [16] and [8]) with variable orders (the autocovari-
ance function (4) considered above is a separable 2D AR
model), or we can use the cepstrum modeling approach
proposed in [23]. The central issue now is the choice of the
orders, but this can be tackled naturally by applying the
MDL principle again: one just needs to add the additional
(variable) code length for encoding the noise model pa-
rameters. However, such ARMA or cepstrum modelling
approaches are unlikely to be practical until sufficiently fast
computers become available.

           
                                                            (a)                                                                                                         (b)

           
                                                          (c)                                                                                                          (d)

Fig. 10. Plots of MDL independent curves (solid lines) and MDL correlated curves (dotted lines) for the cases of: (a) independent noise; (b) corre-
lated noise with separable exponential autocovariance; (c) correlated noise with nonseparable exponential autocovariance; and (d) correlated
noise with bivariate Gaussian autocovariance. The x-axes represent the number of regions in the nested segmentations. Recall that there are 111
regions in the true image. Different curves have been scaled differently to improve readability.
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7.5 Comparison of Independent and Correlated
Procedures

We mentioned that MDLCOR
$, $k W4 9  converges to

MDLIND
$, $k W4 9  when both $α r  and $α c  approach infinity.

Therefore one may treat the independent noise segmenta-
tion procedure as a “special case” of the correlated noise
segmentation procedure, and hence always use the corre-
lated procedure. Simulation results of Section 6.4 also sup-
port this. However, there are reasons for using the inde-
pendent noise segmentation procedure, when the noise is
independent or the correlation is weak.

Firstly, the independent procedure is much faster. For
example, for an image of dimension 512 × 512 with an ini-
tial oversegmentation of about 800 initial regions, our im-
plementation of the independent procedure usually finishes
in less than 20 seconds, while the correlated procedure usu-
ally takes four minutes on a Sparc–10 machine, i.e., the in-
dependent procedure is at least 12 times faster than the cor-
related procedure (faster speed for both procedures is also
possible as we have not fully optimized our codes).

Secondly, if the Gaussian noise is independent or
“weakly correlated” (i.e., when both autocovariance pa-

rameters αr and αc are large), we noticed that usually the
corresponding MDL correlated curve (see Section 6.4 for its
definition) has a sharp local minimum near the correct
place, but sometimes also has a global minimum at k = 0.
That is, it suggests the underlying true image consists of
one single region. We believe the reason for this is as fol-
lows. For the cases of independent or weakly correlated

noise, the parameters αr and αc are extremely large and are
always underestimated by our estimation method (note

that αr = αc = ∞ for independent noise). This would result in

inaccurate computations of MDLCOR
$, $k W4 9 , and hence a

badly behaved MDL correlated curve. This also explains

that, even though MDLCOR
$, $k W4 9  converges theoretically to

MDLIND
$, $k W4 9  when both $α r  and $α c  approach infinity, in

practice MDLCOR
$, $k W4 9  never does so, as we never have

$ $α αr c= = ∞ .
We have also observed that when the noise is weakly

correlated, the independent procedure produces surpris-
ingly good segmentation results, while the correlated pro-
cedure sometimes suggests that the true image is itself a
single region.

The above observations suggest that, if it is known a pri-
ori that the noise is independent or weakly correlated, the
independent procedure should be used.

7.6 Independent or Correlated?
A sensible question to ask is: Should one use the independ-
ent or the correlated segmentation procedure if the noise
structure is unknown? In the present situation, the most
consistent way of selecting an appropriate procedure is to
compare the complete code length for encoding the observed
image assuming independent noise with the complete code
length for encoding the observed image assuming corre-

lated noise, and select the one that gives the smaller code
length. When calculating the complete code length for the
correlated case, we have to include the additional code
length for $A , $α r , and $α c . However, these three parameter
estimates are themselves correlated, and so an encoding
method has to be constructed specifically for them. This is
planned as a future research project, and currently we do
not have an MDL-based answer to the above question.

Nevertheless, we suggest an ad hoc method for choosing
an appropriate segmentation procedure. We will make use

of the initial estimates of αr and αc (i.e., estimates obtained
from the starting oversegmentation): If they are both larger
than a prechosen critical value α0, we use the independent
procedure, as we have evidence that the noise is either in-
dependent or weakly correlated. Otherwise, we use the
correlated procedure. The success of this method is highly
dependent on the choice of α0. Our numerical experience

suggests α0 = 50.
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