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Abstract

One approach to estimating a function nonparametrically is to �t an rth-order regression spline to the noisy observations,
and one important component of this approach is the choice of the number and the locations of the knots. This article
proposes a new regression spline smoothing procedure which automatically chooses: (i) the order r of the regression spline
being �tted; (ii) the number of the knots; and (iii) the locations of the knots. This procedure is based on the minimum
description length principle, which is rarely applied to choose the amount of smoothing in nonparametric regression
problems. c© 2000 Elsevier Science B.V. All rights reserved
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1. Introduction

This article considers the problem of estimating a function nonparametrically. Many approaches to this
problem have been proposed in the literature. These include kernel/local polynomial regression, smoothing
spline methods, regression spline smoothing and wavelet techniques. The approach with which this article is
concerned is regression spline smoothing.
An important aspect associated with regression spline smoothing is the choice of the number and the

placement of the knots. Inadequate number of knots or badly placed knots would lead to oversmoothing in
some regions of the underlying true function, while too many knots would in
ate local variance. This article
proposes an automatic procedure for simultaneously selecting the number and the placement of the knots. In
addition, this procedure is capable of automatically selecting the order (e.g., linear or cubic) of the regression
spline being �tted. The procedure is based on Rissanen’s minimum description length (MDL) principle (e.g.,
see Rissanen, 1989), and consists of two components: (i) an MDL-based criterion in which the “best” function
estimate is de�ned as its minimizer and (ii) a knot deletion algorithm which attempts to locate this minimizer.
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Various non-MDL-based regression spline smoothing procedures have been proposed in the literature. They
are chie
y based on cross-validation or Bayesian approaches: Friedman and Silverman (1989), Smith and
Kohn (1996), Luo and Wahba (1997) and Denison et al. (1998). Note that most of these procedures �x the
order of the spline a priori.

2. Nonparametric regression as model selection

Suppose that n pairs of measurements {xi; yi}ni=1; yi=f(xi)+ �i; �i ∼ iid N(0; �2), are observed. The aim is
to estimate f which is assumed to be “smooth”. To be speci�c, it is assumed that f can be well approximated
by a rth-order regression spline with m knots:

f(x) ≈ b0 + b1x + · · ·+ brxr +
m∑
j=1

�j(x − kj)r+:

Here kj is the location of the jth knot, {b0; : : : ; br ; �1; : : : ; �m} is a set of coe�cients and (a)+ =max(0; a). It
is also assumed that min(xi)¡k1¡ · · ·¡km¡max(xi), and that {k1; : : : ; km} is a subset of {x1; : : : ; xn}.
If f admits the above regression spline representation, then an estimate f̂ of f can be obtained via estimating

r, m; k = (k1; : : : ; km)T, b= (b0; : : : ; br)T and � = (�1; : : : ; �m)T:

f̂(x) = b̂0 + b̂1x + · · ·+ b̂r̂xr̂ +
m̂∑
j=1

�̂j(x − k̂ j)r̂+;

where r̂; m̂; k̂; b̂ and �̂ are estimates of r; m; k; b and �, respectively. Thus, one can see that by approximating
f with a regression spline, the problem of estimating f can be transformed into a model selection problem,
with each plausible model � completely speci�ed by � = {r; m; k; b; �}. Note that di�erent �’s may have
di�erent dimensions (number of parameters), and we shall use the MDL principle to pick the “best” model.
We make the following remark before we proceed. Let x = (x1; : : : ; xn)T; y = (y1; : : : ; yn)T and X =

(1; x; : : : ; xr̂ ; (x − k̂11)r̂+; : : : ; (x − k̂ m̂1)r̂+), where 1 is a n × 1 vector of ones. If r̂; m̂ and k̂ are speci�ed
beforehand, then natural estimates of b and � are given by

(b̂
T
; �̂
T
)T = (XTX)−1XTy: (1)

Observe that these are the maximum likelihood estimates of b and � (conditional on r̂, m̂ and k̂).

3. Model selection by the MDL principle

The MDL principle provides a powerful methodology for attacking model selection problems. Brie
y, it
de�nes the best model as the one that enables the best encoding (or compression) of the data, so that the data
can be transmitted in the most economical way. That is, the best �tted model is the one that produces the
shortest code length of the data. Typically, the code length for a set of data can be split into two parts: (i) a
�tted model plus (ii) the data “conditioning on” the �tted model, i.e., the residuals. In the present situation,
the data are x and y, and a �tted model is simply an estimated �, to be denoted by �̂ below.
Thus, in order to apply the MDL principle to tackle the current problem, we �rst need to construct a code

length expression which calculates the amount of space that is required to store an arbitrarily �̂ plus the
corresponding residuals. Then, the best model, is de�ned as the minimizer of this code length expression.
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4. Derivation of code length expression

This section derives a code length expression for encoding the data x and y. In general, we use L(z) to
denote the code length of the object z. Since our goal is to estimate (or model) y but not x; L(x) can be
treated as a constant, and hence is ignored. Thus our target is L(y).
We follow the two-part code approach of Rissanen (1989, Section 3:1) and express L(y) as

L(y) = L(�tted model) + L(data given the �tted model) = L(�̂) + L(y|�̂)
and for the present problem L(�̂) can be further decomposed into:

L(�̂) = L(r̂) + L(m̂) + L(k̂|m̂) + L(b̂; �̂|r̂; m̂; k̂): (2)

Code length for r̂ and m̂ – L(r̂) + L(m̂): Apparently, when r¿3 it is hard for human eyes to detect any
subtle di�erences between two well �tted but with di�erent r regression splines (e.g., Hastie and Tibshirani
1990, Section 2.9). For this reason many researchers use r = 3, and in this article we shall impose 3 as an
upper bound for r. Therefore, the number of possible choices of r is four, and hence L(r̂) = log2 4 = 2 bits:
a constant that will be ignored. Since m̂ is an integer, using the results of Rissanen (1989, Section 2.2.4),
L(m̂) is given by L∗(m̂), with L∗(·) de�ned by: L∗(N ) = log2 c + log2 N + log2 log2 N + · · · ; where the sum
only includes positive terms and c is a constant approximately equal to 2.865. When m̂ is reasonably large,
L∗(m̂) can be well approximated by log2 m̂. Thus, we have

L(r̂) + L(m̂) ≈ log2 m̂: (3)

Code length for k̂ given m̂ – L(k̂|m̂): Since {k̂1; : : : ; k̂ m̂} is restricted to be a subset of {x1; : : : ; xn}, k̂
can be speci�ed by the indices of those xi’s where a knot is placed. Such a set of (sorted) indices can be
compactly speci�ed by their successive di�erences. For convenience, de�ne k̂0 =min(xi) and k̂ m̂+1 =max(xi),
and let l̂j be the number of xi’s which satisfy k̂ j−16xi ¡ k̂j; j = 1; : : : ; m̂. That is, l̂j is the jth successive
“index di�erence”, and complete knowledge of l̂1; : : : ; l̂m̂ implies complete knowledge of k̂. Now as the l̂j’s
are integers, we have

L(k̂|m̂) = L(l̂1; : : : ; l̂m̂|m̂) =
m̂∑
j=1

L∗(l̂j) ≈
m̂∑
j=1

log2l̂j : (4)

Code Length for {b̂; �̂} given {r̂; m̂; k̂} – L(b̂; �̂|r̂; m̂; k̂): Given {r̂; m̂; k̂}; {b̂; �̂} can be readily computed by
(1), and the resulting computed values are the (conditional) maximum likelihood estimates of b and �. Rissanen
(1989, pp. 55–56) demonstrates that, if a (conditional) maximum likelihood estimate is estimated from N data
points, then it can be e�ectively encoded with 1

2 log2 N bits. It is obvious to see that, when r̂¿1, each of the
b̂j’s and �̂j’s is estimated from all the n measurements. Thus L(b̂0)=· · ·=L(b̂r̂)=L(�̂1)=· · ·=L(�̂m̂)= 1

2 log2 n,
and hence

L(b̂; �̂|r̂; m̂; k̂) = m̂+ r̂ + 1
2

log2 n when r̂¿1: (5)

When r̂ = 0, expression for L(b̂; �̂|r̂; m̂; k̂) is di�erent. It is because when r̂ = 0, f̂ is a piecewise constant
function with jumps at k̂1; : : : ; k̂m, and the “height” of the jth (16j6m̂ + 1) segment is estimated by the
mean of those xi’s which lie inside this segment. There are l̂j such xi’s. In other words, f̂ is speci�ed by
m̂ + 1 “height” parameters, where the jth “height” parameter is estimated from l̂j data points. Hence, using
the same result regarding the encoding of (conditional) maximum likelihood estimates as before, we have

L(b̂; �̂|r̂; m̂; k̂) =
m̂+1∑
j=1

L(“j th estimated height”) =
1
2

m̂+1∑
j=1

log2 l̂j ; when r̂ = 0: (6)
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Code length for y given �̂ = {r̂; m̂; k̂; b̂; �̂} – L(y|�̂): This last part of the overall code length is given
by the negative of the log of the likelihood of y conditioning on the �tted model �̂; see Rissanen (1989,
pp. 54–55). For the present problem, it simpli�es to

L(y|�̂) = n
2
log2

{
RSS(�̂)
n

}
+ C; (7)

where C is a negligible term and RSS(�̂) =
∑{yi −f̂(xi)}2 is the residual sum of squares.

Final code length – L(y): Combining expressions (2)–(7) and changing log2 to the natural log, we obtain
the following MDL criterion:

MDL(�̂) =




log m̂+
m̂∑
j=1

log l̂j +
1
2

m̂+1∑
j=1

log l̂j +
n
2
log

{
RSS(�̂)
n

}
if r̂ = 0;

log m̂+
m̂∑
j=1

log l̂j +
m̂+ r̂ + 1

2
log n+

n
2
log

{
RSS(�̂)
n

}
if r̂¿1:

(8)

The above criterion, being an approximation of L(y), is the objective function that we aim to minimize. We
propose to estimate � (and hence f) by the minimizer of MDL(�̂).
Observe that the negative of MDL(�̂) can be treated as a penalized likelihood function with three penalty

terms. The �rst one accounts for the number of knots, the second term accounts for the “distances” between
knots while the third term mainly accounts for the number of parameters to be estimated.

5. Knot deletion algorithm

Due to the complexity of �̂, �nding the global minimizer of MDL(�̂) is di�cult, and a global search is
infeasible even if n is only of moderate size. Common approaches to overcoming similar problems include
knot insertion, knot deletion, or combinations of both. This section describes a knot deletion algorithm which
may miss the global minimizer of MDL(�̂) but guarantees to �nd a local minimizer.
Firstly �x a value for r̂, and the knot deletion algorithm starts with placing a relatively large number of

initial knots and computes the corresponding value of MDL(�̂). That is, the knot deletion algorithm starts with
an “over�tted” model. Then, at each time step, it removes one knot and recomputes the value of MDL(�̂).
This knot is chosen in such a way that, when it is removed, it provides the largest reduction in the current
value of MDL(�̂). Such a knot deletion strategy is often called the “greedy” strategy (e.g., see Hastie, 1989).
The knot deletion algorithm continues until all initial knots are removed.
One typical strategy for placing initial knots is to place a knot at every s sorted values of the xi’s. As

mentioned in Smith and Kohn (1996), this initial knot placement strategy permits the initial knots to follow
the density of the xi’s. In our implementation s is taken as between 3–5. However, one referee pointed out
that this strategy often fails in capturing high-frequency signals, such as the left tail of Doppler signal tested
in Section 6.3.
If there are M initial knots, then, when the algorithm �nishes, M + 1 hierarchically �tted models are

produced. The one that has the smallest MDL(�̂) value will be chosen as the best �tted model for that �xed
value of r̂.
To choose a r̂ and hence a �nal model, apply the above knot deletion algorithm with di�erent candidate

values of r̂. Then the �tted model which gives the grand minimum MDL(�̂) value will be chosen as the �nal
model. In our implementation, candidate values for r̂ are 0, 1, 2, and 3.
The computing time required to complete the whole procedure depends on the number of data points and

initial knots. If n= 100 with 25 initial knots, the procedure on average takes less than 1 s user time to �nish
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on a Ultra-10 machine. However when n=1024 with 146 initial knots, the procedure on average takes about
50 minutes to �nish using the same machine.

6. Simulation results

This section reports results of three simulation studies, which were designed for assessing the practical
performance of various aspects of the proposed procedure.

6.1. Selection of regression spline order

Here, we are interested in the performance of the proposed procedure in choosing the order r of
the regression spline being �tted. Four test functions were used, and the design density for x was uni-
form in the interval [0; 1]. These four test functions were constructed in such a way that an obvious “best” r
exists; see test functions 1–4 in Table 1 .

Table 1
Speci�cation of test functions. Range of x is [0; 1]; IE is the indicator function for the event E and �(x; �; �2)
is the Gaussian density with mean � and variance �2 evaluated at x

Test function Speci�cation “Best” r

1 4− 7Ix¿0:4 + 5Ix¿0:7 0
2 2:5x − 4(x − 0:25)+ + 1:8(x − 0:5)+ 1
3 1− (x − 0:3)2 + 5(x − 0:6)2+ 2
4 (x − 0:1)(x − 0:3)(0:7x − 0:5)− 3:5(x − 0:65)3+ 3
5 2x − 1 1
6 sin(10�x) —
7 �(x; 0:15; 0:052)=4 + �(x; 0:6; 0:22)=4 —

Table 2
Number of times that a particular value of r is selected. The bracketed number after each test function is
the corresponding “best” r

Test function SNR r = 0 r = 1 r = 2 r = 3

1 (0) Low 83 16 1 0
Medium 70 30 0 0
High 59 41 0 0

2 (1) Low 8 71 14 7
Medium 6 71 11 12
High 1 86 4 9

3 (2) Low 2 0 14 84
Medium 0 5 45 50
High 0 2 62 36

4 (3) Low 2 3 14 81
Medium 0 2 10 88
High 0 0 12 88

We have tested each of the four test functions with three signal-to-noise ratios (SNRs, de�ned below) and
three di�erent sample sizes n i.e., each test function was tested with nine di�erent combinations of SNR
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Fig. 1. Plots of true functions, estimated functions and simulated observations corresponding to the 51st smallest MSE(f̂) values for test
functions 1–4, n = 100 and medium SNR.

and n. We de�ne SNR as the variance ratio var(f)=�2 and used: high SNR = 8, medium SNR = 4 and low
SNR=2. The three values of n used were 50, 100 and 200, and the number of repeated simulations for each
combination of test function, SNR and n was 100. However, we only report results corresponding to n=100,
as results for n= 50 and 200 are similar in nature.
Table 2 reports the number of times that the proposed procedure chose a particular value of r. One can

see that, in general, the proposed procedure performed satisfactorily in terms of choosing the order r (with
the exception of test function 3, low SNR).
To visually evaluate the estimation quality of the proposed procedure, we did the following. For each test

function, we ranked the 100 estimates f̂ of f associated with medium SNR, according to their values of

MSE(f̂) =
1
400

399∑
i=0

{
f
(
i
399

)
−f̂

(
i
399

)}2
:

We then plotted the 51st best estimates for each of the test functions in Fig. 1, together with the corresponding
observations and true functions. From a visual sense, the proposed procedure gave reasonable results.
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Fig. 2. Boxplots of logMSE(f̂) for Test Functions 5–7. Abbreviations used in boxplots: ls – low SNR, ms – medium SNR, and
hs – high SNR.

6.2. Comparison with Bayesian approach

In this section we compare our procedure with the Bayesian regression spline smoothing procedure proposed
by Smith and Kohn (1996). This Bayesian procedure is shown to be the best amongst all regression spline
smoothing procedures considered and compared by Wand (1999).
The test functions used were the three test functions used by Smith and Kohn (1996), and they are listed

in Table 1 as test Functions 5–7. We used the same three SNRs and the same three n’s (50, 100 and 200)
as in the last subsection. The xi’s were from Unif [0; 1], and the number of repeated simulations for each
test function, SNR and n combination was again 100. For each estimate f̂, we computed the corresponding
MSE(f̂) value. Boxplots of the log of these computed values are given in Fig. 2 . For those results associated
with medium SNR and n=100, we also ranked the quality of the MDL-based f̂’s using their MSE(f̂) values.
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Fig. 3. Function plots corresponding to the 51st smallest MSE(f̂) values for test functions 5–7, n = 100 and medium SNR.

The 51st best MDL-based estimates for each of the test functions are plotted in Fig. 3, together with the
corresponding observations, Bayesian estimates and true functions.
Judging from the boxplots displayed in Fig. 2, the proposed MDL-based procedure seems to be slightly

inferior to the Bayesian procedure in terms of mean squared error (the MDL-based procedure performed
better for test function 5 while the Bayesian procedure performed better for test functions 6 and 7). This
is not surprising because of (at least) two reasons. Firstly, Hall and Hannan (1988) demonstrated that, in
the probability density estimation context, the “bandwidth” chosen by the MDL principle is not asymptot-
ically optimal for minimizing L2 distance between the true and the estimated densities, but is of the same
order for minimizing L∞ distance (however the “constant term” is not optimal). That is, the MDL principle
tends to oversmooth in the L2 sense. In fact, Peter Hall (in a personal communication) speculated that this
oversmoothing behavior of the MDL principle would carry over to the regression context.
The second reason is that, the MDL-based procedure has to pay an additional price for its additional


exibility of the free choice of r̂. For test functions 6 and 7, a good choice of r̂ is either 2 or 3. How-
ever, due to sample randomness, the MDL-based procedure sometimes suggested r̂ = 0 or 1, which in
turn produced high MSE(f̂) values. Nevertheless, we do not see the MDL-based procedure is “inadmis-
sible” when comparing with the Bayesian procedure, and in fact we believe one can always construct
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Fig. 4. Boxplots of logMSE(f̂) and logMAD(f̂) for the four wavelet testing functions.

test functions which are tuned to the MDL-based procedure (e.g., a piecewise linear function with suitable
“hinges”).

6.3. Highly spatial inhomogeneous examples

The proposed procedure is also applied to the four wavelet test functions advocated by Donoho and John-
stone (1995) with the following settings: n=1024, the xi’s are regularly spaced in [0; 1] and SNR ≈ 49 (note
that SNR is de�ned di�erently in their paper). Since n is large, we only performed 25 repeated simulations
for each test functions. We indicated in the last subsection that the MDL-based procedure has a tendency to
oversmooth in the L2 sense, therefore in addition to MSE(f̂) we also computed the mean absolute deviation
for each estimated curve:

MAD(f̂) =
1
n

n∑
i=1

|f(xi)−f̂(xi)|:

Boxplots of various logMSE(f̂) and logMAD(f̂) values are given in Fig. 4.
As before, we ranked the MDL-based estimates by MSE(f̂), and plotted those 13th best estimates for

the test functions in Figs. 5 and 6 . Also plotted in Figs. 5 and 6 are the SureShrink estimates of Donoho
and Johnstone (1995) obtained from the same noisy observations. From Figs. 4–6, it is hard to conclude
which procedure is superior, as the two procedures performed di�erently with di�erent test functions and
error criteria. (We have also computed MAD(f̂) for the curve estimates obtained in the previous subsection,
but they are very similar to MSE(f̂) and so are not reported.)
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Fig. 5. Wavelet examples. Top row: simulated observations; middle row: MDL-based estimates; bottom row: SureShrink estimates. Left
column: Blocks; right column: Doppler.
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Fig. 6. Wavelet examples. Top row: simulated observations; middle row: MDL-based estimates; bottom row: SureShrink estimates. Left
column: HeaviSine; right column: Bumps.
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