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TREE-BASED WAVELET REGRESSION FOR CORRELATED DATA
USING THE MINIMUM DESCRIPTION LENGTH PRINCIPLE

Thomas C.M. Lee1

Colorado State University

Summary

This paper considers the problem of non-parametric regression using wavelet techniques.
Its main contribution is the proposal of a new wavelet estimation procedure for recovering
functions corrupted by correlated noise, although a similar procedure for independent noise
is also presented. Two special features of the proposed procedure are that it imposes a so-
called ‘tree constraint’ on the wavelet coefficients and that it uses the minimum description
length principle to define its ‘best’ estimate. The proposed procedure is empirically com-
pared with some existing wavelet estimation procedures, for the cases of independent and
correlated noise.

Key words: correlated noise; minimum description length principle; non-Gaussian noise; tree con-
straint; wavelet regression.

1. Introduction

In recent years wavelet techniques for non-parametric regression have attracted enormous
attention from researchers across different fields. Two main reasons for this are that wavelet
estimators enjoy excellent minimax properties and that they are capable of adapting to spatial
and frequency inhomogeneities (see e.g. Donoho & Johnstone, 1994, 1995; Donoho et al.,
1995). Also, they are backed up by a fast algorithm (see e.g. Mallat, 1989).

Most existing wavelet-based non-parametric regression methods were designed for re-
covering data corrupted by independent Gaussian noise. The primary goal of this paper is to
propose a wavelet function estimation procedure that is capable of handling correlated data.
Two characteristics of this procedure are that it imposes a so-called ‘tree constraint’on the class
of all plausible function estimates and that the final function estimate is chosen by the mini-
mum description length (MDL) principle (see Rissanen, 1989 Chapter 3, and references given
therein). Of course, the proposed procedure also handles independent noise; furthermore, it
can be made specialized to handle non-Gaussian noise (see Section 6.1).

This paper is arranged as follows. Section 2 provides background material for wavelet
regression. Section 3 describes how the MDL principle can be applied to the problem of
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24 THOMAS C.M. LEE

wavelet regression. Section 4 presents an existing MDL criterion (due to Saito). In Section 5,
we show that, to some extent, Saito’s criterion can be simplified by imposing a tree constraint
on the wavelet coefficients. Section 6 presents the proposed procedure. Section 7 reports
simulation results and Section 8 draws conclusions.

While this paper was being revised, the author became aware of the closely related work
by Moulin (1996), in which an MDL tree-based wavelet regression procedure is proposed.
However, Moulin (1996) does not handle correlated noise or provide any simulation results
regarding the practical performance of the procedure.

2. Background: wavelet regression

Suppose we observe n equidistant noisy observations:

yi = fi + ei, fi = f
( i

n − 1

)
(i = 0, . . . , n − 1) ,

where f is an unknown function, and the ei are noise. Our goal is to recover f using wavelet
methods. For simplicity, we assume that n = 2J+1 is an integer power of 2, and consider
both independent and correlated noise.

Broadly speaking, wavelet methods for non-parametric regression involve two steps. The
first step is to obtain the empirical wavelet coefficient vector w by applying a discrete wavelet
transform (DWT) to the observations y = (y0, . . . , yn−1). If we denote the DWT matrix by
W (see e.g. Donoho & Johnstone, 1994), w is given by w = Wy. Here w is an n× 1 vector
and we follow Donoho & Johnstone (1994) and use a double indexing scheme to label its
elements:

w = (w−1,0︸ ︷︷ ︸,
︷︸︸︷
w0,0, w1,0, w1,1︸ ︷︷ ︸,

︷ ︸︸ ︷
w2,0, w2,1, w2,2, w2,3, . . . , wj,k, . . . , wJ,0, . . . , wJ,2J −1︸ ︷︷ ︸) .

Therefore, with the exception of the first element, the indexing scheme is: wj,k , j = 0, . . . , J ;
k = 0, . . . , 2J − 1.

The second step is to apply a filtering operation (e.g. thresholding) to w and obtain an
estimated wavelet coefficient vector ŵ. Then an estimate f̂ of f = (f0, . . . , fn−1) can be

obtained by applying the inverse DWT to ŵ: f̂ = W Tŵ. Below we describe three types of
filtering operation: thresholding, recursive partitioning and methods based on hidden Markov
models.

2.1. Thresholding

Thesholding is perhaps the most widely studied filtering operation; it is widely known
that the quality of f̂ is highly dependent on the threshold values. For the case of independent
noise, various automatic methods have been proposed for choosing their values. These meth-
ods include the ‘universal’ thresholding scheme of Donoho & Johnstone (1994), the SURE
thresholding scheme of Donoho & Johnstone (1995), the cross-validation scheme of Nason
(1996) and the cross-validatory AIC scheme of Hurvich & Tsai (1998). Bayesian methods
have also been proposed: see Chipman, Kolaczyk & McCulloch (1997), Abramovich, Sap-
atinas & Silverman (1998) and Vidakovic (1998). Of particular interest to the present paper
is the MDL-based scheme proposed by Saito (1994). This MDL-based scheme was further
studied by Antoniadis, Gijbels & Gregoire (1997) and it is discussed in detail in Section 4.

c© Australian Statistical Publishing Association Inc. 2002
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Correlated noise has also been considered (although to a much smaller extent). Wang
(1996) provides some asymptotic minimax results, and modifies the independent noise ‘uni-
versal’ and cross-validation thresholding schemes so that they can be applied to correlated
data. Johnstone & Silverman (1997) demonstrate that, even though the SURE thresholding
scheme of Donoho & Johnstone (1995) was originally designed for independent noise, it is
also applicable for correlated data. They also establish many theoretical minimax results. An-
other proposal for dealing with correlated noise is described in Solo (1998). His approach is
to define the estimate f̂ as the minimizer of an L1-penalized weighted least squares criterion.
Because the minimization of such a criterion is not trivial, a minimization algorithm, modified
from the CLEAN algorithm of radiophysics, was developed.

2.2. Recursive partitioning

Engel (1994) provides another example of a filtering operation for handling independent
data. His procedure is specialized to the Haar wavelet system, and is closely related to the
CART method developed by Breiman et al. (1984). The idea behind it is to approximate the
true function by a piecewise constant function and use a recursive partitioning scheme to find
a ‘best-fit’piecewise constant function. Note that in similar situations, a recursive partitioning
scheme can usually be treated as some sort of tree-growing or pruning algorithm.

Donoho (1997) discusses a connection between the CART method for non-parametric
regression and the BOB (best-ortho-basis) method for time-frequency analysis. He also ad-
dresses the denoising of noisy data using the BOB method. However, he does not discuss the
issue of correlated data.

2.3. Hidden Markov models

Crouse, Nowak & Baraniuk (1998) introduced a novel wavelet regression procedure that
uses hidden Markov models. Their procedure was designed for independent noise, and can be
described as follows. Each wavelet coefficient is associated with a hidden binary state variable
S; the value of S is unobservable. If S = 0, say, the corresponding wavelet coefficient is
‘suspected’ to be a ‘noise coefficient’, and is treated as a realization of a zero-mean Gaussian
density with a small variance σ 2

S . On the other hand, if S = 1, say, the corresponding
wavelet coefficient is ‘suspected’ to be a ‘signal coefficient’, and is treated as a realization of
a zero-mean Gaussian density with a high variance σ 2

H . Both σ 2
S and σ 2

H are unknown.
Then the dependencies of the state variables are modelled by a probabilistic graph with

a tree structure. Note that this is different from imposing a tree dependency structure directly
on the wavelet coefficients (which is the approach taken by the present paper). The next
step is to apply an EM algorithm to obtain the maximum likelihood estimates of the hidden
state probabilities, σ 2

S and σ 2
H . Once these estimates are computed, final wavelet coefficient

estimates are obtained by an empirical Bayesian procedure.

3. MDL for wavelet regression

We motivate our discussion of the MDL principle by the following problem. Suppose
a set of observed data z and a class of plausible models � = {θ1, . . . , θm} for z are given,
and our goal is to select a ‘best’ model for z from �. It is allowed that different θi may
have different numbers of parameters. One typical example is subset selection in the multiple
regression context.
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The MDL principle provides a powerful method for attacking such model selection prob-
lems. In short, the MDL principle defines the ‘best’ model as the one that enables the best
encoding (or compression) of the data z, so that z can be transmitted in the most economical
way. That is, the best fitted model is the one that produces the shortest codelength of z. In
the present context, the codelength of z can be treated as the amount of memory space that is
required to store z.

One general method for encoding z is to ‘split’ z into two components: a fitted model θ̂

plus the corresponding residuals r̂. Rissanen (1989 pp. 54–58) called this ‘two-part coding’.
We follow Rissanen’s notation and use L(a) to denote the codelength for the object a. We
have

L(z) = L(θ̂) + L(r̂ | θ̂) .

The MDL principle defines the best θ̂ as the one that gives the smallest L(z). In the above
expression we have stressed that r̂ is ‘conditional’ on θ̂ .

For the wavelet regression problem that we consider here, z corresponds to y, θ̂ corre-
sponds to f̂ or ŵ (note that there is a one-to-one correspondence between f̂ and ŵ), and
r̂ corresponds to ê = y − f̂ . In other words, the MDL principle suggests that ŵ should be
chosen as the one that minimizes

L(y) = L(ŵ) + L(ê | ŵ) . (1)

Thus to apply the MDL principle to the problem of wavelet regression, we must first derive an
expression for L(y), and then develop a procedure for minimizing the derived expression.

4. An existing MDL criterion for independent noise

When the noise is independent, Saito (1994) developed an MDL-based procedure for ob-
taining ŵ (and hence f̂ ). His procedure keeps the first m̂ largest (in terms of absolute value)
wavelet coefficients and deletes all the remaining ones, where m̂ is chosen as the minimizer of
an MDL criterion that he derived (i.e. an expression for L(y)). Thus his procedure is equivalent
to a global thresholding scheme that has its threshold value chosen as any number between the
m̂th and (m̂ + 1)th largest absolute values of the empirical wavelet coefficients. Antoniadis
et al. (1997) provide supportive theoretical and simulation results for Saito’s criterion.

To encode ŵ so that it can be transmitted, we need to encode (i) the indices, and (ii) the
actual estimated values of those non-zero coefficients ŵjk in ŵ. Since the index of a non-zero
coefficient ŵjk is an integer between 1 and n, Saito asserts that the codelength for encoding
such an index is log2 n. For the codelength of encoding the actual values of those estimated
non-zero coefficients in ŵ, we can apply the result of Rissanen (1989 pp .55–56), which says
the codelength for encoding one of these estimated values is 1

2 log2 n. One heuristic argument
for this result is as follows. Each ŵjk is estimated from n noisy observations, so there is no
need to encode ŵjk to a precision that is finer than its standard error. Now as the standard error

is asymptotically of order
√

n, it suggests that ŵjk can be effectively encoded with 1
2 log2 n

bits. Thus, if there are m̂ non-zero coefficients in ŵ, the total codelength for encoding ŵ is

L(ŵ) = L(‘indices’) + L(‘actual estimated values’)

= m̂ log2 n + 1
2 m̂ log2 n = 3

2 m̂ log2 n . (2)
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Now if an estimated ŵ is ‘reasonable’, the residual ê approximately satisfies the model
assumption (independent Gaussian for the current situation). Rissanen (1989 pp .54–55)
shows that, by using this fact, the codelength L(ê | ŵ) for encoding ê is given by the nega-
tive of the conditional log-likelihood (base 2) of ê given ŵ. When the noise is independent
Gaussian and if we estimate σ 2 by σ̂ 2 = ‖ê‖2/n, this negative conditional log-likelihood
becomes (‖x‖2 is defined as xTx)

− log2

{( 1√
2πσ̂ 2

)n

exp
(

− ‖ê‖2

σ̂ 2

)}
= 1

2n log2 2π + 1
2n log2

‖ê‖2

n
+ n .

Thus, for minimization purposes, we can take

L(ê | ŵ) = 1
2n log2

‖ê‖2

n
. (3)

Therefore, combining (1), (2) and (3), we have Saito’s criterion

LS(y) = L(ŵ) + L(ê | ŵ) = 3
2 m̂ log2 n + 1

2n log2
‖ê‖2

n
. (4)

However, in cases where the non-zero wavelet coefficients ‘cluster’ together, we claim
that there is redundancy in Saito’s criterion. By ‘cluster’ we mean that if ŵjk is non-zero
then ŵj−1,k , ŵj,k−1 , ŵj,k+1 and ŵj+1,k are also non-zero. Thus, when encoding such a
ŵ, we can make use of this fact and obtain a smaller value for L(ŵ) (i.e. with a shorter
codelength expression for ŵ). This means that, in cases where ‘clustering’ is present (as
defined previously), Saito’s criterion over-penalizes the number of non-zero coefficients and
hence has a tendency to underestimate the ‘true’ m.

5. Tree constraint

How can a ŵ be encoded so that the above ‘clustering’property is captured? One possible
approach is to use a tree to represent the indices of the non-zero elements of ŵ. As we shall
see later, another advantage of using a tree representation is that it agrees with the intuition
that wavelet coefficients at a finer level (or resolution) should have a greater chance of being
deleted than those coarser level wavelet coefficients at the same relative location. The first
element w−1,0 of a w carries the information of the mean of y, so it should always be kept
(unless y is a zero-mean white noise). For this reason, we ignore the index of w−1,0 and
focus on the indices of the remaining non-zero elements of a ŵ.

Define ŵj+1,2k and ŵj+1,2k+1 as the ‘children’ of ŵjk, 0 ≤ j < J. We also call ŵjk

the ‘parent’ of ŵj+1,2k and ŵj+1,2k+1. We impose the constraint that, if ŵjk is deleted, none
of its children can survive. That is, for 0 ≤ j < J,

ŵjk = 0 ⇒ ŵj+1,2k = 0 and ŵj+1,2k+1 = 0 .

This sort of constraint, sometimes known as tree constraint, is just a severe executioner of the
intuition mentioned above that wavelet coefficients at finer levels should have higher chances
of being deleted.

Once tree constraint is imposed, the idea of tree representation is straightforward. We
illustrate it with an example. Suppose the only non-zero elements of ŵ are ŵ00 , ŵ10 , ŵ11 ,
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Figure 1. An example illustrating the tree representation of the indices of non-zero coefficients in ŵ
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Figure 2. Node attributes and traversal order (in parenthesis) of the tree displayed in Figure 1

ŵ20 , ŵ22 , ŵ23 , ŵ30 , ŵ31 and ŵ35 . The indices, or the relative positions, of these elements
can be represented by the tree shown in Figure 1. Note that ŵ10 and ŵ22 have only one child.

By imposing tree-constraint on wavelet coefficients we can capture the ‘clustering’ prop-
erty as defined previously. However, it is known that large coefficients do not always ‘cluster’
together, especially from one resolution level to another (i.e. from j to j + 1). Indeed, it is
true only along a sub-sequence of the resolution levels (see Daubechies, 1992 p .300). There-
fore, by imposing tree constraint we might delete large wavelet coefficients at high resolution
level and induce numerical errors even without noise. Of course, there are cases where those
numerical errors are smaller than the error due to noise and in such cases the proposed method
is acceptable. Section 7.1 provides some examples.

The next task is to construct a method for encoding the tree structure. Various methods
for encoding and optimizing classification trees are proposed in the literature; see e.g. Quinlan
& Rivest (1989), Wallace & Patrick (1993) and Rissanen (1997). However, these methods are
not suitable for our purposes because they all assume that all internal nodes of a classification
tree have two children. Note also that the tree structure implicitly defined by the wavelet
recursive partitioning scheme of Engel (1994) also falls into this category.

Here we suggest a tree-encoding method which allows for the possibility that an internal
node possesses only one child. First notice that a node can only have one of the following
four attributes: possesses no children (N), possesses a left child (L), possesses a right child
(R) and possesses two children (T). Thus, if we agree to traverse a tree in a recursive, top-
down, depth-first and left-first manner, we can encode the tree structure by just encoding the
attributes of its nodes in the order that the nodes are visited.

To illustrate the idea, the tree in Figure 1 is re-drawn in Figure 2 with node attributes and
traversal order displayed. Therefore, by using the above traversal scheme, the tree structure
is represented by ‘TLTNNTRNN’.
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6. A tree-based MDL criterion

We present a new MDL criterion using a tree constraint on wavelet coefficients. First, we
assume that the noise is independent and then we explain how to handle the case of correlated
noise. We also briefly describe a tree-growing strategy for (approximately) minimizing this
new criterion.

6.1. Independent noise

Recall that an MDL criterion, or codelength expression, for wavelet regression is of
the form L(y) = L(ŵ) + L(ê | ŵ), and L(ŵ) can be further decomposed into L(ŵ) =
L(‘indices’) + L(‘actual estimated values’); see (2). What is L(‘indices’) when the indices
are represented by a tree?

There are only four possible attributes for each node of a tree. Thus log2 4 = 2 bits
are needed to encode the attribute of one node. If there are m̂ non-zero wavelet coefficients
(i.e. m̂ nodes), L(‘indices’) = 2m̂ and hence L(ŵ) = 2m̂ + 1

2 m̂ log2 n; see (2). Using the
slightly vague argument that because n is usually large and m̂ is small and thus the term 2m̂

is negligible, we approximate L(ŵ) by L(ŵ) ≈ 1
2 m̂ log2 n .

If the noise is independent Gaussian, combining (1), L(ŵ) ≈ 1
2 m̂ log2 n and (3), L(y)

can be approximated by

MDLIND(f̂ ) = 1
2 m̂ log2 n + 1

2n log2
‖ê‖2

n
. (5)

When the noise is known to be independent Gaussian, we propose that f can be estimated
by the minimizer of MDLIND(f̂ ), subject to the condition that the tree constraint is satisfied.

The criterion MDLIND(f̂ ) can be modified for handling non-Gaussian noise if the density
function of the noise, say g, is known up to a dispersion parameter φ. The second term of
MDLIND(f̂ ) is the codelength for encoding the residual ê and it is given by the negative of
the conditional log-likelihood of ê given ŵ. Thus a modified criterion for non-Gaussian noise
can be obtained by replacing the second term in MDLIND(f̂ ) by − log2 g(ê | ŵ). Previous
work on non-Gaussian noise can be found, for example, in Moulin (1994), Neumann & von
Sachs (1995) and Gao (1997).

6.2. Correlated noise

Suppose that the noise ei is correlated, and can be adequately modelled by an autore-
gressive (AR) series of an unknown order p:

ei = a1ei−1 + a2ei−2 + · · · + apei−p + τi ,

where a = {a1, . . . , ap} are unknown AR parameters and τi is a Gaussian innovation. This
reduces to the independent noise case when p = 0. Extension to autoregressive moving-
average (ARMA) noise or even autoregressive integrated moving-average (ARIMA) noise is
conceptually simple, but for computational reasons we do not pursue it here.

Under the autoregressive dependence, the codelength expression L(ê | ŵ) can be decom-
posed into

L(ê | ŵ) = L(â | ŵ) + L(τ̂ | â, ŵ) ,
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where â is an estimate of a, τ̂ = (τ̂1, . . . , τ̂n) with τ̂i = êi − â1êi−1 −· · ·− âp̂ êi−p̂ , and p̂ is
an estimate of p. Now as each of â1, â2, . . . , âp̂ is estimated from n data points, L(â | ŵ) ≈
1
2 p̂ log2 n (see the heuristic argument given in the second paragraph of Section 4). Also, if
ŵ and â are reasonable estimates, then, by model assumption, τ̂ would be (approximately)
independent normal, and hence L(τ̂ | â, ŵ) ≈ 1

2n log2(‖τ̂‖2/n) (similar to (3)). Therefore
we have

L(ê | ŵ) = L(â | ŵ) + L(τ̂ | â, ŵ) ≈ 1
2 p̂ log2 n + 1

2n log2
‖τ̂‖2

n
.

The êi can be treated as an AR series, and the above codelength expression agrees with the
classical one discussed for example in Hannan & Quinn (1979).

Using steps similar to those in Section 6.1, we obtain the following criterion, which can
be taken as an approximation for L(y) when the noise is autoregressively correlated:

MDLCOR(f̂ ) = 1
2 (m̂ + p̂) log2 n + 1

2n log2
‖τ̂‖2

n
. (6)

When the noise is correlated, we propose that f can be estimated by the minimizer of the
criterion MDLCOR(f̂ ), subject to the tree constraint.

Observe that MDLCOR(f̂ ) is a generalization of MDLIND(f̂ ), as MDLCOR(f̂ ) reduces
to MDLIND(f̂ ) when p̂ = 0. For this reason, if it is not clear whether the noise is indepen-
dent or correlated, we recommend using MDLCOR(f̂ ) as the target. In fact, in the numerical
experiments reported in Section 7, we always use MDLCOR(f̂ ) as our target even when the
noise is independent.

6.3. Tree-growing

The imposition of the tree constraint suggests a natural tree-growing algorithm for ap-
proximating the minimizer of MDLIND(f̂ ) (or MDLCOR(f̂ )). The idea is straightforward:
the root node (ŵ00) is the initial tree, and at each time-step the tree grows by the addition of
a best-embryo node. An embryo node is a node which is directly linked but does not belong
to the current tree, and a best-embryo node is defined as the embryo node that has the largest
absolute value amongst all other embryo nodes. (A best-embryo node can also be defined in a
different way. For example, a best embryo node can be defined as the embryo node such that,
when it is added to the current tree, it gives the largest reduction in the value of MDLIND(f̂ )

or MDLCOR(f̂ ).)

The tree-growing algorithm continues until the size, in terms of number of nodes, of the
tree hits a pre-set limit SMAX (a maximal tree is of size n − 1). Thus, when the algorithm
finishes, a nested sequence of SMAX trees is produced, and the tree that gives the smallest
value of MDLIND(f̂ ) or MDLCOR(f̂ ) is taken as the final estimate. When we are searching
for the minimizer of MDLCOR(f̂ ), an additional step for searching for a ‘best’ AR order is
required, and that a maximal AR searching order pMAX has to be imposed. Also, we may
want to impose a minimum size limit SMIN for the final chosen tree, recognising that, in some
existing wavelet thresholding schemes, low level wavelet coefficients are not thresholded.
Throughout our numerical experiments we set SMAX = 1

2n, SMIN = 0 and pMAX = 4.
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Figure 3. Plots of test functions

Saito’s criterion (4) can, in principle, be extended to handle correlated noise, just as we
extended criterion (5) to (6). However, the minimization of such a modified Saito’s criterion
may not be practically feasible, as the tree-growing algorithm can no longer be applied.

7. Numerical experiments

This section reports results of three numerical experiments. We used five test func-
tions: the four test functions Blocks, Doppler, Heavisine and Bumps of Donoho & Johnstone
(1994), and the broken polynomial test function (which we call BrokenPoly) of Nason &
Silverman (1994). These five test functions are plotted in Figure 3. Also, throughout the three
experiments, we used Daubechies’s order 4 ‘least asymmetric’ wavelet (Daubechies, 1992
pp. 198–199). For evaluating the quality of an estimated f̂ , we used the numerical measure
MISE(f̂ ) = ‖f − f̂ ‖2, which was taken as an approximation of the mean integrated squared
error.

7.1. No noise

To investigate the possibility that imposing the tree constraint may prevent a true func-
tion from being completely recovered, we applied our tree-growing algorithm for minimizing
MDLCOR(f̂ ) to recover the testing functions using the functions themselves as the observed
data. That is, no noise was present. The recovered functions are virtually identical to the
true functions, except for some numerical errors: the values of log MISE(f̂ ) for the five test
functions are −46.82, −18.92, −23.06, −12.90 and −50.77, respectively. These values
are much smaller than the corresponding values of log MISE(f̂ ) reported below.

7.2. Independent noise

In this subsection we investigate the relative practical performances of four wavelet re-
gression methods when the noise is independent:

1. the SURE thresholding procedure of Donoho & Johnstone (1995);
2. the Bayesian thresholding procedure of Abramovich et al. (1998);
3. the MDL-based thresholding (MDL-Thresh) procedure of Saito (1994); and
4. the proposed tree-growing procedure (MDL-Tree) which aims to minimize MDLCOR(f̂ )

(rather than MDLIND(f̂ )).

We defined the signal-to-noise ratio (SNR) as SNR = ‖f ‖/σ (as in Donoho & Johnstone,
1994), and used three levels: high SNR = 9, medium SNR = 7 and low SNR = 5. For each
combination of test function and SNR, 50 sets of noisy observations were simulated, and the
number of data points n for each dataset was 512.

For each simulated dataset, we applied the four wavelet methods listed above to estimate
the test function. For each combination of test function and SNR, Figure 4 displays boxplots
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Figure 4. Boxplots of log(MISE(f̂ )) values for independent noise.
Numbers listed below the boxplots are relative paired Wilcoxon test rankings.
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Figure 5. Estimates of the five test functions obtained from
independent noisy observations, medium SNR

of the values of log MISE(f̂ ) (for all f̂ ). We also performed paired Wilcoxon tests to test if
the difference between the median MISE(f̂ ) values of two wavelet methods was significant
or not. The significance level used was 1.25%, and the relative rankings, with 1 being the
best, are also listed below the corresponding boxplots in Figure 4. Ranking the methods in
this manner is not perfectly legitimate, but it provides an indicator of the relative merits of the
methods (see Wand, 2000).

To visually evaluate and compare the performances of the four wavelet regression meth-
ods, we did the following. For the combination of the test function Blocks and medium SNR,
we ranked the 50 f̂ s obtained by the proposed tree-based method, according to their values of
MISE(f̂ ). The 25th best f̂ , together with the corresponding simulated noisy data, is plotted
in Figure 5. Estimates obtained by applying the other three wavelet regression methods to this
same simulated noisy dataset are also plotted in Figure 5. The same procedure was repeated
for the remaining four test functions, and the results are also displayed in Figure 5.

c© Australian Statistical Publishing Association Inc. 2002



34 THOMAS C.M. LEE

1
2

3
4

SURE MDL-Tree

Blocks, AR(1)

lo
g(

M
IS

E
)

2 1

2.
0

2.
5

3.
0

3.
5

SURE MDL-Tree

Blocks, AR(2)

lo
g(

M
IS

E
)

1.5 1.5 2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

SURE MDL-Tree

Blocks, ARMA(1,1)

lo
g(

M
IS

E
)

2 1

-2
.0

-1
.5

-1
.0

-0
.5

0.
0

0.
5

SURE MDL-Tree

Doppler, AR(1)

lo
g(

M
IS

E
)

2 1

-1
.5

-1
.0

-0
.5

0.
0

0.
5

SURE MDL-Tree

Doppler, AR(2)

lo
g(

M
IS

E
)

1 2

-1
.5

-1
.0

-0
.5

0.
0

0.
5

SURE MDL-Tree

Doppler, ARMA(1,1)

lo
g(

M
IS

E
)

1 2

0
1

2
3

SURE MDL-Tree

Heavisine, AR(1)

lo
g(

M
IS

E
)

2 1

1
2

3

SURE MDL-Tree

Heavisine, AR(2)

lo
g(

M
IS

E
)

2 1

2.
0

2.
5

3.
0

SURE MDL-Tree

Heavisine, ARMA(1,1)
lo

g(
M

IS
E

)

1.5 1.5

1
2

3

SURE MDL-Tree

Bumps, AR(1)

lo
g(

M
IS

E
)

2 1

1.
5

2.
0

2.
5

SURE MDL-Tree

Bumps, AR(2)

lo
g(

M
IS

E
)

2 1

1.
5

2.
0

2.
5

3.
0

3.
5

SURE MDL-Tree

Bumps, ARMA(1,1)

lo
g(

M
IS

E
)

1.5 1.5

-5
-4

-3
-2

SURE MDL-Tree

BrokenPoly, AR(1)

lo
g(

M
IS

E
)

2 1

-4
-3

-2
-1

SURE MDL-Tree

BrokenPoly, AR(2)

lo
g(

M
IS

E
)

2 1 -3
.0

-2
.5

-2
.0

-1
.5

SURE MDL-Tree

BrokenPoly, ARMA(1,1)

lo
g(

M
IS

E
)

2 1

Figure 6. Boxplots of log(MISE(f̂ )) values for correlated noise.
Numbers listed below the boxplots are relative paired Wilcoxon test rankings.
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Figure 7. SURE and MDL-Tree estimates obtained from AR(1) correlated noisy observations
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Figure 8. Similar to Figure 7 except for AR(2) noise
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Figure 9. Similar to Figure 7 except for ARMA(1,1) noise
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Except for those cases associated with Doppler, the MDL-Tree procedure compares favour-
ably with the other three procedures, although it also exhibits some instability, as the length
of some MDL-Tree boxplots is relatively large.

7.3. Correlated noise

Here we are interested in the performances of the SURE procedure and the proposed
MDL-Tree procedure (which aims to minimize MDLCOR(f̂ )) when the noise is correlated.
Johnstone & Silverman (1997) show that the SURE procedure is also applicable when the
noise is correlated.

The setup for this correlated noise experiment was essentially the same as for the inde-
pendent noise experiment, with the exception that the noise e = (e1, . . . , en) was generated
from the ARMA(p, q) model

ei = a1ei−1 + · · · + apei−p + τi + b1τi−1 + · · · + bqτi−q ,

where τi denotes a Gaussian innovation. Three different types of ARMA noise were con-
sidered: AR(1) with a1 = −0.8, AR(2) with a1 = 4/3 and a2 = −8/9, and ARMA (1,1)
with a1 = 0.2 and b1 = −0.9. Throughout the whole experiment, the noise was always
linearly stretched so that (max(f ) − min(f ))/(max(e) − min(e)) = 5. Note that Johnstone
& Silverman (1997) also use the same AR(2) noise in their numerical examples, and that the
ARMA(1,1) case does not satisfy the assumption made by MDLCOR(f̂ ).

Boxplots, together with the corresponding paired Wilcoxon test rankings, are displayed
in Figure 6, and the ‘25th best estimates’ are displayed in Figures 7–9. As before, except for
Doppler, the MDL-Tree procedure compares favourably with the SURE procedure.

8. Conclusions

In this paper, a tree-based wavelet non-parametric regression procedure is proposed. This
procedure is designed to handle autoregressively correlated noise, and applies the MDL prin-
ciple to choose its best estimate. Results of numerical experiments demonstrate that, except
for the cases of highly oscillating functions (e.g. Doppler), the proposed procedure provides
satisfactory performances.
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