
J. Statist. Comput. Simul., 2002, Vol. 72(8), pp. 647–663

ON ALGORITHMS FOR ORDINARY LEAST
SQUARES REGRESSION SPLINE FITTING:

A COMPARATIVE STUDY

THOMAS C. M. LEE*

Department of Statistics, Colorado State University, Fort Collins, CO 80523-1877, USA

(Received 25 October 2001; In final form 4 March 2002)

Regression spline smoothing is a popular approach for conducting nonparametric regression. An important issue
associated with it is the choice of a ‘‘theoretically best’’ set of knots. Different statistical model selection
methods, such as Akaike’s information criterion and generalized cross-validation, have been applied to derive
different ‘‘theoretically best’’ sets of knots. Typically these best knot sets are defined implicitly as the optimizers
of some objective functions. Hence another equally important issue concerning regression spline smoothing is
how to optimize such objective functions. In this article different numerical algorithms that are designed for
carrying out such optimization problems are compared by means of a simulation study. Both the univariate and
bivariate smoothing settings will be considered. Based on the simulation results, recommendations for choosing a
suitable optimization algorithm under various settings will be provided.

Keywords: Bivariate smoothing; Generalized cross-validation; Genetic algorithms; Regression spline; Stepwise
selection

1 INTRODUCTION

An increasingly popular approach for performing nonparametric curve estimation is regres-

sion spline smoothing. For this approach it is customary to assume that the ‘‘true’’ curve f ðxÞ

to be recovered admits the expression

f ðxÞ ¼ b0 þ b1x þ � � � þ brx
r þ

Xm

j¼1

bjðx � kjÞ
r
þ; ð1Þ

where r is the order of the regression spline (usually chosen a priori), kj is the jth knot,

b ¼ ðb0; . . . ; br; b1; . . . ; bmÞ
T is a set of coefficients and ðaÞþ ¼ maxð0; aÞ. In order to esti-

mate f ðxÞ using (1), one needs to choose the number and the placement of the knots, as well

as to estimate b. As mentioned in Wand (2000), there are two general strategies for carrying

out this task. The first strategy is to select a relatively small number of knots and estimate b
using ordinary least squares (further details will be given below). With this strategy, the

choice of the knots is extremely important. Regression spline smoothing procedures follow-

ing this strategy include Friedman and Silverman (1989), Koo (1997), Kooperberg, Bose and

* Tel.: (970) 491 2185; Fax: (970) 491 7895; E-mail: tlee@stat.colostate.edu

ISSN 0094-9655 print; ISSN 1563-5163 online # 2002 Taylor & Francis Ltd
DOI: 10.1080=0094965021000024035



Stone (1997), Lee (2000), Pittman (1999) and Stone, Hansen, Kooperberg and Truong

(1997). The second strategy is to use a relatively large number of knots, but do not use or-

dinary least squares to estimate b. In contrast to the first strategy, for this second strategy the

importance of the choice of knots is relatively minor: the crucial aspect is how b is estimated

(e.g., by penalized least squares). Recent related references include Denison, Mallick and

Smith (1998a), DiMatteo, Genovese and Kass (2001), Eilers and Marx (1996), Lindstrom

(1999), Ruppert and Carroll (2000), Smith and Kohn (1996).

This article focuses on the first strategy. Many regression spline smoothing procedures

adopting this strategy are composed of two major components. The first component concerns

the use of some sort of statistical model selection principle for defining a ‘‘theoretically best’’

set of knots. Quite often, such a ‘‘theoretically best’’ set of knots is defined implicitly as the

optimizer of some objective function. The second component is hence a practical algorithm

for performing the corresponding optimization. Typically this optimization is a very hard pro-

blem, as (i) the search space is usually huge and (ii) different candidate solutions may have

different dimensions. The main purpose of this paper is to provide a study for the perfor-

mances of some common algorithms that are designed for carrying out such optimization

problems. Both the univariate and bivariate settings will be considered (but the question of

which is the most appropriate principle for defining a ‘‘theoretically best’’ set of knots will

not be considered here). Our hope is that, by separating the two issues of ‘‘defining the

best’’ and ‘‘locating the defined best’’, and that by performing a focused study on the latter

one, useful computational hints can be obtained for reference by future researchers.

Due to the complicated nature of the regression spline optimization algorithms, theoretical

comparison seems to be very difficult. Therefore, the study to be presented is entirely based

on empirical experiments. Of course it is impossible to exhaust all possible experimental set-

tings, but we shall follow Wand (2000) to use a family approach to alleviate this problem.

The idea is to change one experimental factor (e.g., signal-to-noise ratio) at a time so that

patterns can be more easily detected.

In (1) it is clear that f ðxÞ is a linear combination of fxjgr
j¼0 and fðx � kjÞ

r
þg

m
j¼1. This set of

functions is known as the truncated power basis of degree r. Other basis functions for regres-

sion spline fitting also exist, such as those for B-splines, natural splines and radial basis func-

tions (e.g., see Eilers and Marx, 1996; Green and Silverman, 1994). However, as pointed out

by Wand (2000), numerical experimental results should not be very sensitive to the choice of

basis functions. Therefore for simplicity this article shall concentrate on the truncated power

basis.

The rest of this article is organized as follows. In Section 2 further background details on

univariate regression spline smoothing and the use of generalized cross-validation (GCV) for

defining a ‘‘best’’ estimate will be provided. Then Sections 3 and 4 describe six different

optimization algorithms. These six algorithms will be, in Section 5, compared through a

simulation study. Finally Section 6 considers the bivariate setting. Conclusions and recom-

mendations for the univariate and the bivariate cases are reported in Sections 5.5 and 6.3

respectively.

2 REGRESSION SPLINE SMOOTHING USING GCV

Suppose that n pairs of measurements fxi; yig
n
i¼1 satisfying

yi ¼ f ðxiÞ þ ei; ei 	 iid N ð0; s2Þ;

648 T. C. M. LEE



are observed. The goal is to estimate f which is assumed to satisfy (1). In this article it is

assumed r ¼ 3 and minðxiÞ < k1 < � � � < km < maxðxiÞ. Furthermore, following the work

of previous authors (e.g., see Friedman and Silverman, 1989; Koo, 1997; Smith and

Kohn, 1996), fk1; . . . ; kmg is restricted to be a subset of fx1; . . . ; xng. Such a restriction should

not have any serious adverse effect on the quality of the final curve estimate. Since f can be

completely specified by h ¼ fk; bg, where k ¼ ðk1; . . . ; kmÞ
T and b ¼ ðb0; . . . ; br;

b1; . . . ; bmÞ
T , the estimation of f can be achieved via estimating h. Notice that different esti-

mates ĥhs for h may have different dimensions (i.e., different number of parameters). Various

methods have been proposed for choosing the dimension of a ‘‘best’’ ĥh. One of the earliest

proposals is the use of generalized cross-validation (GCV) (e.g., see Friedman and

Silverman, 1989; Friedman, 1991; Pittman, 1999), in which the ‘‘best’’ estimate of h, or

equivalently, f, is defined as the one that minimizes

GCVðĥhÞ ¼
1=n

Pn
i¼1fyi � f̂f ðxiÞg

2

f1 � dðmÞ=ng2
: ð2Þ

Here dðmÞ is an increasing function of the number of the knots m. In order to penalize the

additional flexibility inherited by the free choice of knot locations, Friedman and Silverman

(1989) suggested using dðmÞ ¼ 3m þ 1 instead of the conventional GCV choice

dðmÞ ¼ m þ 1. In the sequel this GCV choice of ĥh, with dðmÞ ¼ 3m þ 1, will be taken as

the target that the optimization algorithms should aim at.

Let x ¼ ðx1; . . . ; xnÞ
T , y ¼ ðy1; . . . ; ynÞ

T and k̂k ¼ ðk̂k1; . . . ; k̂km̂mÞ
T be an estimate of k.

Denote the ‘‘design matrix’’ as X ¼ ð1; x; . . . ; xr; ðx � k̂k11Þrþ; . . . ; ðx � k̂km̂m1ÞrþÞ, where 1 is

a n 
 1 vector of ones. If r and k̂k are specified beforehand, then the unique maximum like-

lihood estimate b̂b of b (conditional on r and k̂k) can be obtained by applying ordinary least

squares regression, and admits the closed form expression b̂b ¼ ðX T X Þ
�1XT y. This means

that ĥh ¼ fk̂k; b̂bg is completely determined by k̂k. Therefore the only effective argument for

the minimization of GCVðĥhÞ (or any other similar criteria) is k; i.e., the knots. In the next

two sections two classes of knot-based optimization algorithms will be described. Their ef-

fectiveness, in terms of minimizing GCVðĥhÞ, will be studied in Section 5 via simulations.

Besides GCV, other model selection principles that have also been applied to derive

various ‘‘best’’ knot sets include Akaike’s information criterion (AIC) (e.g., Koo, 1997;

Kooperberg et al., 1997) and the minimum description length (MDL) principle (e.g., Lee,

2000). Some preliminary numerical experiments were also conducted for both AIC and

MDL. Empirical conclusions obtained from these experiments are similar to those for

GCV. Due to space limitation, results of these experiments are not reported here.

3 STEPWISE KNOT SELECTION

The most popular method for searching the minimizer of GCVðĥhÞ (or any other similar criter-

ia) seems to be stepwise knot selection (e.g., see Friedman, 1991; Friedman and Silverman,

1989; Hansen, Kooperberg and Sardy, 1998; Koo, 1997; Kooperberg et al., 1997; Lee, 2000

and references given therein). The idea is very similar to stepwise regression for the classical

subset selection problem. It begins with an initial model as the current model. Then at each

time step a new model is obtained by either adding a new knot to or removing an existing

knot from the current model. This process continues until a certain stopping criterion is

met. Amongst all the candidate models that have been visited by the algorithm, the one

that gives the smallest value of GCVðĥhÞ is chosen as the final model. In this article the

LEAST SQUARES REGRESSION SPLINE FITTING 649



following four versions of this stepwise method are considered. A comparison of the relative

computational speeds amongst these versions is given in Section 5.5.

1. Forward Addition (ForAdd): Set the initial model as the model with no knots and com-

pute its GCVðĥhÞ value. Add a new knot to the current model at each time step. The knot is

chosen in such a way that, when it is added, it produces the largest reduction (or smallest

increase) in the current value of GCVðĥhÞ. Continue this knot addition process until the num-

ber of knots added hits a pre-selected limit. Throughout our simulation study reported below,

this pre-selected limit was set to n=3. Finally, when the knot-adding process finishes, a nested

sequence of candidate models is produced and the one that minimizes GCVðĥhÞ is selected as

the final model.

2. Backward Elimination (BackElim): This version begins with placing a relatively large

number of knots in the initial model. One typical strategy for placing these knots is to

place a knot at every s (usually 3 � s � 5) sorted values of the design points xi’s. In our si-

mulation study we used s ¼ 3. Then the algorithm proceeds to remove one knot at a time,

until there are no more knots to be removed. At each time step the knot to be removed is

chosen in such a way that, when it is removed, it provides the largest reduction (or smallest

increase) in the current value of GCVðĥhÞ. Similar to ForAdd, at the end of the process a

nested sequence of candidate models is obtained. Select the one that gives the smallest

GCVðĥhÞ as the final model.

3. Addition followed by Elimination (AddElim): This version uses the final model selected

by a first application of ForAdd as the initial model for the execution of BackElim. The

resulting model obtained from such an execution of BackElim is taken as the final model.

4. Elimination followed by Addition (ElimAdd): This version uses the final model selected

by a first application of BackElim as the initial model for the execution of ForAdd. The

resulting model obtained from such an execution of ForAdd is taken as the final model.

4 GENETIC ALGORITHMS

Another class of optimization algorithms that have been applied to regression spline smooth-

ing is genetic algorithms; e.g., see Lee (2002), Pittman (1999), Pittman and Murthy (2000)

and references given therein. Below we begin with a brief description of genetic algorithms.

As we shall see, an important issue in applying genetic algorithms is how to represent a can-

didate model as a chromosome. Two different chromosome representation methods will be

described and compared. For general introductions to genetic algorithms, see for examples

Davis (1991), Fogel (2000) and Michalewicz (1996).

4.1 General Description

The use of genetic algorithms for solving optimization problems can be briefly described

as follows. An initial set, or population, of possible solutions to an optimization problem

is obtained and represented in vector form. Typically these vectors are of the same length

and are often called chromosomes. They are free to ‘‘evolve’’ in the following way. Firstly

parent chromosomes are randomly chosen from the initial population: chromosomes having

lower or higher values of the objective criterion to be minimized or maximized, respectively,

would have a higher chance of being chosen. Offspring are then reproduced from either

applying a crossover or a mutation operation to these chosen parents. Once a sufficient num-

ber of such second generation offspring are produced, third generation offspring are further

produced from these second generation offspring in a similar manner as before. This

650 T. C. M. LEE



reproduction process continues for a number of generations. If one believes in Darwin’s Nat-

ural Selection, the expectation is that the objective criterion values of the offspring should

gradually improve over generations; i.e., approaching the optimal value. For the current pro-

blem, the objective function is GCVðĥhÞ and one chromosome represents one ĥh.

In a crossover operation one child chromosome is reproduced from ‘‘mixing’’ two parent

chromosomes. The aim is to allow the possibility that the child would receive different best

parts from its parents. A typical ‘‘mixing’’ strategy is that every child gene location would

have equal chances of either receiving the corresponding father gene or the corresponding

mother gene. This crossover operation is the distinct feature that makes genetic algorithms

different from other optimization methods.

In a mutation operation one child chromosome is reproduced from one parent chromo-

some. The child would essentially be the same as its parent except for a small number of

genes where randomness is introduced to alter the types of these genes. Such a mutation op-

eration prevents the algorithm being trapped in local optima.

For the reason of preserving the best chromosome of a current generation, an additional

step that one may perform is the elitist step: replace the worst chromosome of the next gen-

eration with the best chromosome of the current generation. Inclusion of this elitist step

would guarantee the monotonicity of the algorithm.

4.2 Chromosome Representations

This section describes two methods for representing a ĥh in a chromosome form: the first

method is described in Lee (2002), while the second method can be found in Pittman

(1999). First recall that for the current curve fitting problem a possible solution ĥh can be uni-

quely specified by k̂k, and that k̂k is assumed to be a subset of the design points fx1; . . . ; xng.

Thus for the present problem a chromosome only needs to carry information about k̂k.

1. Fixed-Length Representation (GeneFix): In this representation method all chromosomes

are binary vectors with the same length n, the number of data points. A simple example will

be used to illustrate its idea. Suppose n ¼ 15 and k̂k ¼ fx3; x8; x14g; i.e., there are three knots

in this candidate model and they are located at x3; x8 and x14. If we use ‘‘0’’ to denote a nor-

mal gene and ‘‘1’’ to denote a knot gene, then the chromosome for this example is

001000010000010. One advantage of this method is that, it can be easily extended to handle

cases when outliers and/or discontinuities are allowed: simply introduces two additional types

of genes, outlier genes and discontinuity genes.

2. Variable-Length Representation (GeneVar): For this method the chromosomes are not

binary nor having the same length. Here the location of a knot is represented by one

integer-valued gene, and hence the length of a chromosome is equal to the number of

knots in the candidate model. For the previous example, the corresponding chromosome is

3-8-14 (the hyphens were merely used to separate the genes). Since the chromosomes are

generally not of the same length, the optimization is done in the following way. First pre-specify

the minimum and the maximum number of knots that any candidate model can have. Denote

them as KMIN and KMAX respectively. Then for each K ¼ KMIN; . . . ;KMAX, apply the algo-

rithm to find the best candidate model amongst only those candidate models that have K

knots. That is, for this particular run of the algorithm, all chromosomes are restricted to

have the same length K. Then, after the execution of the algorithm for every value of K, a

sequence of KMAX � KMIN þ 1 models is obtained. The one that minimizes GCVðĥhÞ will

be chosen as the final model. Please consult Lee (2002) and Pittman (1999) for further details

on the implementations of these algorithms.

LEAST SQUARES REGRESSION SPLINE FITTING 651



5 SIMULATION STUDY

This section presents results of a series of numerical experiments which were conducted

to evaluate the performances of the various optimization algorithms (four stepwise and

two genetic) described above. These experiments were designed to study the effects of

varying the (i) noise level, (ii) design density, (iii) noise variance function, and (iv) degree

of spatial variation.

The simulation was conducted in the following way. For each of the experimental setups

described below, 100 artificial noisy data sets, each with 200 design points xi, were generated.

Then, for each of these 100 data sets, the above six algorithms were applied to minimize

GCVðĥhÞ and the corresponding f̂f is obtained. For each obtained f̂f , both the GCV value

and the mean-squared error (MSE) value, defined as 1=n
P

iff ðxiÞ � f̂f ðxiÞg
2, are computed

and recorded. Paired Wilcoxon tests were then applied to test if the difference between the

median GCV (and MSE) values of any two algorithms is significant or not. The significance

level used was 5=6% ¼ 0:83%. If the median GCV (or MSE) value of an algorithm is sig-

nificantly less than the remaining five, it will be assigned a GCV (or MSE) rank 1. If the

median GCV (or MSE) value of an algorithm is significantly larger than one but less than

four algorithm, it will be assigned a GCV (or MSE) rank 2, and similarly for ranks 3 to

6. Algorithms having non-significantly different median values will share the same averaged

rank. Ranking the algorithms in this manner provides an indicator about the relative merits of

the methods (see Wand, 2000). Since the main interest of this article is to compare the algo-

rithms in terms of their abilities for conducting numerical minimization, GCV seems to be a

more appropriate performance measure here than MSE.

5.1 Varying Noise Level

For this first experiment four test functions were used. They are given in Table I and are also

plotted in Figure 1. These test functions possess different characteristics and were also used

by many previous authors.

The data ðxi; yiÞ were generated using yi ¼ f ðxiÞ þ ei, where f is a test function, xi is drawn

from Unif[0, 1], and ei is a zero-mean Gaussian error with variance s2. Three signal-to-noise

ratios (SNRs) were used: SNR ¼ 2, 4 and 6, where SNR is defined as kf k=s. Boxplots of the

GCV and log(MSE) values for the six algorithms, together with their Wilcoxon test rankings,

are given in Figures 2 and 3.

5.2 Varying Design Density

The same four test functions as in the Varying Noise Level experiment were used. The data

ðxi; yiÞ were also generated from yi ¼ f ðxiÞ þ ei with s ¼ kf k=4 (i.e., SNR ¼ 4), but now

the xi’s were drawn from three different densities. The three densities are Beta(1.2, 1.8),

TABLE I Formulae for Test Functions.

Test Function 1: f(x) ¼ (4x7 2) þ 2 exp{�16(4x7 2)2}, x 2 [0, 1]

Test Function 2: f(x) ¼ sin3(2p x3), x 2 [0, 1]

Test Function 3: f ðxÞ ¼
4x2ð3 � 4xÞ; x 2 ½0; 0:5Þ
4
3

xð4x2 � 10x þ 7Þ � 3
2
; x 2 ½0:5; 0:75Þ

16
3

xðx � 1Þ2; x 2 ½0:75; 1�

8<
:

Test Function 4: f(x) ¼ sin (8px), x 2 [0, 1]

652 T. C. M. LEE



Beta(1.5, 1.5) and Beta(1.8, 1.2), and their probability density functions are plotted in Figure

4. Boxplots of the GCV and log(MSE) values, and Wilcoxon test rankings of the algorithms

are displayed in Figures 5 and 6 in a similar manner as before.

5.3 Varying Noise Variance Function

Again, the same four test functions as in the Varying Noise Level experiment were used, but

the variance of the Gaussian noise was not the same for all values of xi. Rather, the variance

was specified by a variance function vðxÞ, and the data ðxi; yiÞ were generated from

FIGURE 1 Four test functions.

FIGURE 2 Boxplots of the GCV values for the ‘‘Varying Noise Level’’ experiment. In each panel the boxplots
correspond respectively to, from left to right, ForAdd, BackElim, AddElim, ElimAdd, GeneFix and GeneVar. The
number below each boxplot is the Wilcoxon test ranking.

LEAST SQUARES REGRESSION SPLINE FITTING 653



yi ¼ f ðxiÞ þ vðxiÞei, where s ¼ kf k=4 and the xi’s were drawn from Unif[0, 1]. The following

three variance functions vðxÞ were used:

Variance Function 1 vðxÞ ¼ 0:5 þ x; x 2 ½0; 1�;

Variance Function 2 vðxÞ ¼
1:3 � 1:2x x 2 ½0; 0:5Þ;

0:2 þ 1:2x x 2 ½0:5; 1�;

(

Variance Function 3 vðxÞ ¼ 1:5 � x; x 2 ½0; 1�:

FIGURE 3 Similar to Figure 2 but for log(MSE).

FIGURE 4 Plots of the three different design densities.

654 T. C. M. LEE



FIGURE 5 Similar to Figure 2 but for the Varying Design Density experiment.

FIGURE 6 Similar to Figure 5 but for log(MSE).

LEAST SQUARES REGRESSION SPLINE FITTING 655



These variance functions are plotted in Figure 7. Boxplots of the GCV and log(MSE) values,

together with the Wilcoxon test rankings are given in Figures 8 and 9 in a similar manner as

before.

5.4 Varying Spatial Variation

In this experiment the six test functions were taken from Wand (2000), all have different de-

grees of spatial variation. They are indexed by a single integer parameter j, and have the form

fjðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 � xÞ

p
sin

2pf1 þ 2ð9�4jÞ=5g

x þ 2ð9�4jÞ=5

� �
; j ¼ 1; . . . ; 6:

FIGURE 7 Plots of the noise variance functions.

FIGURE 8 Similar to Figure 2 but for the Varying Noise Variance Function experiment.

656 T. C. M. LEE



Note that it is of the same structural form of the Doppler function introduced by Donoho and

Johnstone (1994).

The data ðxi; yiÞ were generated from yi ¼ fjðxiÞ þ ei with s ¼ kfjk=4 and the xi’s drawn

from Unif[0, 1]. The test functions, together with typical simulated data sets, are plotted

in Figure 10. In a similar fashion as before, boxplots of GCV and log(MSE) values, and

Wilcoxon test rankings of the algorithms are displayed in Figures 11 and 12.

5.5 Empirical Conclusions and Recommendations

The six algorithms gave fairly consistent performances for the above different experimental

settings. The averaged Wilcoxon GCV and MSE test rankings are given in Tables II and III

respectively. Judging from the overall averaged rankings, it seems that the two genetic

algorithms are superior to the stepwise procedures, especially in terms of minimizing

GCVðĥhÞ.

The computation times taken for the stepwise procedures to finish one run under various

settings were reasonably constant. The typical running times on a Sun Ultra-60 Work-

station for ForAdd, BackElim, AddElim and ElimAdd were respectively 15 s, 38 s, 15 s

and 53 s. These timings are best to be served as upper bounds, as we did not optimize

the codes in our implementation. For the genetic algorithms, the execution times were

FIGURE 9 Similar to Figure 8 but for log(MSE).

LEAST SQUARES REGRESSION SPLINE FITTING 657



quite variable: for GeneFix it ranged from 50 s to 70 s, while for GeneVar it ranged from

50 s to 100 s. Therefore, if computation time is not an issue, then one should perhaps use

the genetic algorithms. However, if time is an important issue, then AddElim seems to be a

good compromise.

FIGURE 10 Plots of the test functions, together with typical simulated data sets, for the Varying Spatial Variation
experiment.

FIGURE 11 Similar to Figure 2 but for the Varying Spatial Variation experiment.

658 T. C. M. LEE



One last interesting observation is that, for some settings the GCV and MSE values are not

linearly related; i.e., a ĥh that has a small GCV value does not guarantee to have a small MSE

value, and vice versa. This may suggest that GCVðĥhÞ is not the best criterion if the goal is to

obtain the ĥh that minimizes MSE.

FIGURE 12 Similar to Figure 11 but for log(MSE).

TABLE III Similar to Table II but for the Wilcoxon MSE Test Rankings.

Algorithm NoiseL DesignD VarFn SpaVar Overall

ForAdd 3.33 3.21 3.08 2.50 3.03
BackElim 4.96 5.13 5.21 5.50 5.20
AddElim 4.08 3.50 3.88 2.92 3.60
ElimAdd 4.25 4.03 4.54 4.33 4.29
GeneFix 2.21 2.29 2.29 2.25 2.26
GeneVar 2.17 2.83 2.00 3.50 2.63

TABLE II Average Wilcoxon GCV Test Rankings for the Four Univariate
Experimental Settings: Noise Level (NoiseL), Design Density (DesignD), Variance
Function (VarFn) and Spatial Variation (SpaVar).

Algorithm NoiseL DesignD VarFn SpaVar Overall

ForAdd 6.00 5.96 6.00 4.67 5.66
BackElim 4.50 4.54 4.50 5.17 4.68
AddElim 3.84 3.62 3.71 2.83 3.50
ElimAdd 3.33 3.21 3.33 3.92 3.45
GeneFix 1.71 1.88 1.88 1.42 1.72
GeneVar 1.63 1.79 1.59 3.00 2.00

LEAST SQUARES REGRESSION SPLINE FITTING 659



6 BIVARIATE SMOOTHING

This section considers bivariate smoothing. Due to space limitation, the description will be

kept minimal. Important references include Friedman (1991) and Kooperberg et al. (1997).

6.1 Background

The data fyi; x1i; x2ig
n
i¼1 are now assumed to satisfy

yi ¼ f ðx1i; x2iÞ þ ei; ei 	 iid N ð0; s2Þ; ð3Þ

where f is the bivariate ‘‘true’’ surface to be recovered. It is assumed that f can be modeled by

f ðx1; x2Þ ¼
X

bjBjðx1; x2Þ;

where the basis functions Bjðx1; x2Þ’s are of the form 1; x1; x2, ðx1 � k1uÞþ; ðx2 � k2vÞþ; x1x2,

x2ðx1 � k1uÞþ; x1ðx2 � k2vÞþ and ðx1 � k1uÞþðx2 � k2vÞþ. Also, the knots are restricted to be a

subset of the marginal values of the design points ðx1i; x2iÞ. In our simulation a bivariate ver-

sion of GCVðhÞ is used to define a ‘‘best’’ f̂f .

Driven by the univariate simulation results, two algorithms for minimizing the GCV func-

tion are investigated: stepwise knot addition followed by elimination and genetic algorithms

with fixed-length chromosomes. These two algorithms are simple straightforward extensions

of their univariate counterparts. In fact the stepwise procedure to be compared in our simula-

tion below was taken from the POLYMARS package mainly developed by Charles Kooperberg

(see the unpublished manuscript Kooperberg and O’Connor n.d.). Note that in POLYMARS

a ‘‘no interactions if no main effects’’ constraint is placed on all the possible candidate mod-

els. The same constraint was also imposed for the genetic algorithm.

6.2 Simulation

A simulation study was conducted. Although it was done at a smaller scale when comparing

to the univariate setting, we believe that useful empirical conclusions can still be drawn. Five

bivariate test functions were used. They are listed in Table IV and are plotted in Figure 13.

These functions have been used by for example Denison, Mallick and Smith (1998b) and

Hwang, Lay, Maechler, Martin and Schimert (1994), and were constructed to have a unit

standard deviation and a non-negative range. The data were generated according to (3),

with the design points drawn from Unif ½0; 1�2. The number of design points was 100, and

three SNRs were used: 2, 4 and 6. The number of replicates was 100.

TABLE IV Five Test Functions for the Bivariate Setting.

Test Function 1 : f ðx1; x2Þ ¼ 10:391fðx1 � 0:4Þðx2 � 0:6Þ þ 0:36g

Test Function 2 : f ðx1; x2Þ ¼ 24:234fr2ð0:75 � r2Þg; r2 ¼ ðx1 � 0:5Þ2 þ ðx2 � 0:5Þ2

Test Function 3 : f ðx1; x2Þ ¼ 42:659f0:1 þ ~xx1ð0:05 þ ~xx4
1 � 10~xx2

1~xx
2
2 þ 5~xx4

2Þg; ~xx1 ¼ x1 � 0:5;~xx2 ¼ x2 � 0:5

Test Function 4 : f ðx1; x2Þ ¼ 1:3356½1:5ð1 � x1Þ þ e2x1�1 sinf3pðx1 � 0:6Þ2g þ e3ðx2�0:5Þ sinf4pðx2 � 0:9Þ2g�

Test Function 5 : f ðx1; x2Þ ¼ 1:9½1:35 þ ex1 sinf13ðx1 � 0:6Þ2ge�x2 sinð7x2Þ�

660 T. C. M. LEE



FIGURE 13 Perspective plots of bivariate test functions.

FIGURE 14 Boxplots of GCV values for the bivariate smoothing experiment. Numbers in parentheses are
Wilcoxon test rankings.

LEAST SQUARES REGRESSION SPLINE FITTING 661



For each simulated data set, the two algorithms were applied to minimize the GCV func-

tion and obtain the corresponding f̂f . As for the univariate case, both the GCV and MSE va-

lues were computed. The MSE values were computed over a grid of 25 
 25 grid points.

Boxplots of the GCV and log(MSE) values, together with the Wilcoxon test rankings, are

provided in Figures 14 and 15. Typically it took less than 5 s for the POLYMARS stepwise

procedure to finish, while for the genetic algorithm the computation times ranged from 50 s

to 300 s.

6.3 Results and Some Suggestions

In terms of minimizing the GCV function, the stepwise procedure performed better for Test

Function 1, while the genetic algorithm performed better for the remaining four test func-

tions. However, both procedures gave similar performances in terms of MSE. It seems to sug-

gest that, when the ‘‘true’’ surface is simple in structure (such as Test Function 1), the greedy

nature of the stepwise procedure can reliably locate good intermediate search directions dur-

ing the minimization of GCV. However, when the ‘‘true’’ surface is more complicated, the

stepwise procedure may fail to do so, and one may need to switch to the computationally-

very-expensive genetic algorithm.

Acknowledgement

The author would like to thank one referee for his/her constructive comments.

FIGURE 15 Similar to Figure 14 but for log(MSE).

662 T. C. M. LEE



References

Davis, L. (1991) Handbook of Genetic Algorithms, New York, Van Nostrand Reinhold.
Denison, D. G. T., Mallick, B. K. and Smith, A. F. M. (1998a) Automatic bayesian curve fitting, Journal of the Royal

Statistical Society Series B, 60, 333–350.
Denison, D. G. T., Mallick, B. K. and Smith, A. F. M. (1998b) Bayesian MARS, Statistics and Computing, 8,

337–346.
DiMatteo, I., Genovese, C. R. and Kass, R. E. (2001) Bayesian curve fitting with free-knot splines, Biometrika, 88,

1055–1071.
Donoho, D. L. and Johnstone, I. M. (1994) Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81, 425–455.
Eilers, P. H. C. and Marx, B. D. (1996) Flexible parsimonious smoothing and additive modeling (with discussion),

Statistical Science, 89, 89–121.
Fogel, D. B. (2000) Evolutionary computing, IEEE Spectrum, pp. 26–32.
Friedman, J. H. (1991) Multivariate adaptive regression splines (with discussion), The Annals of Statistics, 19, 1–141.
Friedman, J. H. and Silverman, B. W. (1989) Flexible parsimonious smoothing and additive modeling (with

discussion), Technometrics, 31, 3–21.
Green, P. J. and Silverman, B. W. (1994) Non Parametric Regression and Generalized Linear Models, London,

Chapman and Hall.
Hansen, M. H., Kooperberg, C. and Sardy, S. (1998) Triogram models, Journal of the American Statistical

Association, 93, 101–119.
Hwang, J.-N., Lay, S.-R., Maechler, M., Martin, R. D. and Schimert, J. (1994) Regression modeling in back-

propagation and projection pursuit learning, IEEE Transactions on Neural Networks, 5, 342–353.
Koo, J.-Y. (1997) Spline estimation of discontinuous regression functions, Journal of Computational and Graphical

Statistics, 6, 266–284.
Kooperberg, C. and O’Connor, M. (n.d.) POLYMARS (unpublished manuscript).
Kooperberg, C., Bose, S. and Stone, C. J. (1997) Polychotomous regression, Journal of the American Statistical

Association, 92, 117–127.
Lee, T. C. M. (2000) Regression spline smoothing using the minimum description length principle, Statistics and

Probability Letters, 48, 71–82.
Lee, T. C. M. (2002) Automatic smoothing for discontinuous regression functions, Statistica Sinica (to appear).
Lindstrom, M. J. (1999) Penalized estimation of free-knot splines, Journal of Computational and Graphical

Statistics, 8, 333–352.
Michalewicz, Z. (1996) Genetic Algorithms þ Data Structures ¼ Evolution Programs, 3rd revised and extended

ed. Berlin, Heidelberg, Springer-Verlag.
Pittman, J. (1999) Adaptive splines and genetic algorithms, Journal of Computational and Graphical Statistics (to

appear).
Pittman, J. and Murthy, C. (2000) Fitting optimal piecewise linear functions using genetic algorithms, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22, 701–718.
Ruppert, D. and Carroll, R. J. (2000) Spatially-adaptive penalties for spline fitting, Australian and New Zealand

Journal of Statistics, 42, 205–223.
Smith, M. and Kohn, R. (1996) Nonparametric regression using Bayesian variable selection, J. Econometrics, 75,

317–344.
Stone, C. J., Hansen, M., Kooperberg, C. and Truong, Y. K. (1997) Polynomial splines and their tensor products in

extended linear modeling (with discussion), The Annals of Statistics, 25, 1371–1470.
Wand, M. P. (2000) A comparison of regression spline smoothing procedures, Computational Statistics, 15,

443–462.

LEAST SQUARES REGRESSION SPLINE FITTING 663


