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Abstract

This article proposes a new nonparametric procedure for estimating log spectra. This procedure consists of three major
components: (1) a novel statistical model for modelling the unknown target log spectrum, (2) an AIC-based model selection
criterion for choosing a ‘best’ 7tting model, and (3) a genetic algorithm for e8ectively searching the ‘best’ 7tting model.
Numerical experiments are conducted to evaluate and compare the practical performance of the proposed procedure with
some other common log spectral estimation procedures appearing in the literature. These other procedures include wavelet
techniques, kernel smoothing and regression spline 7tting. Empirical results suggest that the proposed procedure compares
favourably against all these procedures, especially when the unknown log spectrum contains inhomogeneous structures.
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This article studies the problem of nonparametric
log spectral density estimation. Various log spec-
trum estimation procedures that adopt the idea of
smoothing the log periodogram have been proposed.
These include kernel smoothing (e.g., [6,14,17,20]),
smoothing spline methods (e.g., [19,23]) and wavelet
techniques (e.g., [9,18,24]). The new procedure that
this article proposes uses a di8erent statistical model
to model the target log spectrum: the target log
spectrum is modelled by a series of disconnected
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regression splines that partition the domain of the
spectrum (brieFy, regression splines are a special kind
of polynomial functions and a brief introduction is
given in Section 2.2). As will be demonstrated below,
such a model is extremely suitable for spectra with
inhomogeneous structures.
It will be shown below that the problem of

estimating a log spectrum using this disconnected re-
gression spline approach can be posed as a statistical
model selection problem, in which di8erent candidate
models may have di8erent dimensions. In order to
tackle this model selection problem, we employ a
modi7ed form of the Akaike’s information criterion
(AIC) [1] to construct an objective function for which
the best 7tting model for our problem is de7ned as its
optimizer. However, optimizing this objective func-
tion would involve solving a hard and large scale
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optimization problem. In this work we propose using
genetic algorithms for solving such problems (e.g.,
see [5,7] and references given therein). Simulation
results suggest that the use of genetic algorithms is
very e8ective.
The rest of this article is organized as follows. Back-

ground material on the properties of log periodograms
and regression splines is given in Section 2. In Section
3 we present our new disconnected regression spline
model for log spectra. Section 4 describes the above
mentioned AIC model selection method while Section
5 proposes a genetic algorithm for solving the related
optimization problem. Section 6 reports simulation re-
sults. Finally, conclusions are given in Section 7.

2. Background

2.1. Log periodogram

Suppose that {xt} is a real-valued, zero-mean
strictly stationary process with unknown spectral den-
sity S, and that a 7nite-sized realization x0; : : : ; x2n−1

of {xt} is observed. The periodogram is de7ned as

I(!) =
1

2	× 2n

∣∣∣∣∣
2n−1∑
t=0

xt exp(−i!t)

∣∣∣∣∣
2

; !∈ [0; 2	):

To simplify notation, write !l = 2	l=(2n). Since the
spectral density S is symmetric about != 	, we shall
focus our discussion on S(!l) for l= 0; : : : ; n− 1.
Let �r=E(xt−rxt), r=0; 1; : : : ; be the autocovariance

function. If all moments of xt exist, the sum of all
|�r|’s is bounded and n is large (e.g., see [2, Theorem
5.2.6]), then

I(!l) ≈ S(!l)�l; l= 0; : : : ; n− 1; (1)

where �0, and �n=2 if n is even, are independent �21
random variables, and all other �j’s are independent
random variables distributed as the standard exponen-
tial distribution. From now on, as in [6,9,14,18–20,
22–24], �0 and �n=2 will be treated as if they were stan-
dard exponential random variables and the approxi-
mation in (1) is assumed to be exact. The e8ect of
these changes is asymptotically negligible. Hence, we
have the following model:

I(!l) = S(!l)�l; l= 0; : : : ; n− 1;

where the �j’s are independent standard exponen-
tial random variables. Thus E{I(!l)} = S(!l) and
var{I(!l)}= S(!l)2.
Due to its unacceptably large variance, I(!l) is sel-

dom used as an estimate of S(!l). To stabilize these
high variance I(!l)’s, it is common to apply a loga-
rithmic transform to convert the above multiplicative
noise model into an additive noise model (e.g., see
[6,9,14,18,19,23,24])

y(!l) = log I(!l) + �= log S(!l) + �l

=f(!l) + �l; l= 0; : : : ; n− 1: (2)

In the above �=0:57721 is the Euler’s constant and the
�l’s are independent random variables with probability
density function p�(x) = exp{x − �− exp(x − �)}. It
can be shown that E(�l)=0 and var(�l)=	2=6. Also,
in the above f = log S is the log spectrum.
With the above set-up, the problem that this ar-

ticle considers can be stated as: given the “data”
y= (y(!0); : : : ; y(!n−1))T that are obtained from the
periodogram and the additive noise model (2), we
would like to estimate f in a nonparametric fash-
ion. It is anticipated that f may possess some abrupt
changing structures but is otherwise smooth.

2.2. Regression splines

In the statistics literature an increasingly popu-
lar nonparametric curve 7tting method is regression
spline smoothing; e.g., see [8,10,13,11,16]. Regres-
sion splines are a special kind of piecewise polynomi-
als. Those breakpoints that divide a regression spline
into pieces is known as knots. Usually these divided
pieces are low-order polynomials having the same or-
der, and they are forced to join smoothly at the knots.
Common choices for the order of the polynomials are
linear, quadratic and cubic. In this article we shall use
piecewise quadratic polynomials constrained to have
continuous 7rst derivative at the knots. This idea is
illustrated in Fig. 1. If k1¡ · · ·¡km is a sequence of
m knots, then mathematically a quadratic regression
spline fQ can be expressed as

fQ(!) = �0 + �1!+ �2!2 +
m∑
r=1

�r(!− kr)2+;

where �i’s and �r’s are parameters and (!)+ denotes
max(0; !). It is straightforward to verify that fQ is
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Fig. 1. Piecewise quadratic regression splines: there are three pieces in each of the two quadratic splines. The one on the right is constrained
to have continuous 7rst derivative. Vertical lines indicate the locations of the knots.

a quadratic polynomial in any interval [kr; kr+1) and
that fQ possesses continuous 7rst derivative.
It is widely known that the crucial aspect of regres-

sion spline 7tting is the choice of the number and the
placement of the knots: inadequate number of knots
or badly placed knots would lead to oversmoothing in
some regions of the underlying true function, while
too many knots would inFate local variance. Once
the number and locations of the knots are determined,
unique maximum likelihood estimates of �i’s and �r’s
can be obtained (or approximated) say by the Newton–
Raphson algorithm (or least-squares regression); e.g.,
see [13,16].
As a remark we mention that regression splines are

not the same as smoothing splines nor interpolating
splines: a smoothing spline is de7ned as the f̂ that
minimizes

∑{y(!l) − f̂(!l)}2 + �
∫ {f̂′′

(!)}2 d!
(� is a pre-determined smoothing parameter) while an
interpolating spline passes through all the data points
(i.e., no smoothing is done).

3. Log spectrum model: disconnected regression
splines

This section presents our model for the log spec-
trum f. One characteristic of our model is that it
is capable of handling f with inhomogeneous struc-
tures. The idea is to approximate f by a series of dis-
connected quadratic regression splines. In this way

boundary points between any two adjacent quadratic
regression splines can serve as locations of sudden
changes in f; see Fig. 2 for an illustration. In the se-
quel we shall call these boundary points break points.
Despite that regression splines have been used in the
spectral density estimation context (e.g., [13]), to the
best of our knowledge, the use of a series of regres-
sion splines to handle inhomogeneous structures in a
log spectrum is novel.
Suppose it is known that there are B − 1 break

points in f and that these break points are located at
b1; b2; : : : ; bB−1. For convenience let b0 =!0 and bB=
!n−1, and assume b0¡b1¡ · · ·¡bB. Then one way
to estimate f is to 7t a separate quadratic regression
spline to each of the B disjoint segments [bj−1; bj),
j=1; : : : ; B. If IE is the indicator function for the event
E, then such a disconnected regression spline model
for f can be expressed as

f(!) =f1(!)I{b06!¡b1} + f2(!)I{b16!¡b2}

+ · · ·+ fB(!)I{bB−16!6bB}; (3)

where each of the fj’s is a quadratic regression spline
having mj knots located at kj1; kj2; : : : ; kjmj .

Furthermore,

fj(!) = �j0 + �j1!+ �j2!2 +
mj∑
r=1

�jr(!− kjr)2+;

bj−16!¡bj; j = 1; : : : ; B; (4)
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Fig. 2. A series of disconnected regression splines that consists of two quadratic regression splines. The vertical broken line x = 0:5
indicates the location of the break point, while the vertical dotted lines indicate the locations of the knots.

where �j = {�j0; �j1; �j2} and �j = {�j1; : : : ; �jmj}
are model parameters. To simplify notation, let
b = {b1; : : : ; bB−1}, m = {m1; : : : ; mB} and kj =
{kj1; : : : ; kjmj} for j=1; : : : ; B. Although not necessary
but for computational convenience, it is assumed that
{bj; kjr; for all j; r} is a subset of {!0; : : : ; !n−1} and
that

b0¡k11¡ · · ·¡k1m1 ¡b1¡ · · ·¡bj−1¡kj1

¡ · · ·¡kjmj ¡bj ¡ · · ·¡bB:

Of course, in most situations the number and loca-
tions of the break points and knots are not known and
need to be estimated.

4. Model selection and parameter estimation

If f is modelled by the above disconnected
regression splines (3) and (4), then an estimate
f̂ of f can be obtained by 7rst estimating � =
{B; b;m; {kj; �j; �j}Bj=1} and then plugging the re-

sulting estimate �̂= {B̂; b̂; m̂; {k̂j; �̂j; �̂j}B̂j=1} into (3)
and (4). Hence using the disconnected regression
spline approach, our original log spectrum estimation
problem can be posed as a model selection problem,
with each candidate model speci7ed by a �̂. The goal,
then, is to select a “best” �̂. Notice that di8erent �̂’s
may have di8erent dimensions. Also notice that once
B̂, b̂, m̂ and {k̂j}B̂j=1 are speci7ed, natural maximum

likelihood estimates of {�̂j; �̂j}B̂j=1 will be uniquely
determined, and can be iteratively computed say by
the Newton–Raphson algorithm.
Now the question is: how to select a best-7tting

model �̂? We shall consider the use of a generalization
of the Akaike’s information criterion (AIC) [1] (see

also [3] for a comprehensive reference). With AIC the
best 7tting model is chosen as the one that minimizes
an estimator of the Kullback–Leibler (KL) distance
measure (e.g., see [3]) between a 7tted model and the
“true” model. If p is the number of parameters that
need to be estimated in a 7tted model, then under some
mild regularity conditions one can show that such a KL
distance estimator is−2× “maximized log likelihood”
+2p. For our log spectral density estimation problem
this distance estimator amounts to

AIC(f̂) =

[
2
n−1∑
l=0

[exp{y(!l)− f̂(!l)− �}

−{y(!l)− f̂(!l)} − �] + �p
]
�=2

: (5)

However, empirical results for similar but di8erent
model selection problems often suggest that �=2 is not
a good choice. Instead, it is often suggested to replace
� = 2 by � = log n; e.g., see [11–13]. Such a change
of the value of � is in fact making AIC the same as
the Bayesian information criterion (BIC) [21].
We shall follow this suggestion and select the

best model f̂ as the one that minimizes AIC(f̂)
with � = log n. Our empirical experience also sup-
ports this choice. Note that for our regression model

p= 3B̂+
∑B̂

j=1 m̂j. Also, we use a Newton–Raphson
algorithm to obtain maximum likelihood estimates of
the parameters {�̂j; �̂j}B̂j=1.

5. Optimization by genetic algorithms

When the number of data points is large, 7nding the
best estimate de7ned by the above AIC/BIC criterion
would involve solving a hard, large scale minimization
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problem. Common techniques for dealing with these
types of problems include knot addition, knot dele-
tion, knot movement or combinations of them; e.g.,
[8,13,16]. However, these techniques do not provision
the inclusion of break points in our model. In this ar-
ticle we suggest using genetic algorithms, which are
also known as evolutionary algorithms [7], for solving
our needs. It has been demonstrated that, when cor-
rectly applied, genetic algorithms can tackle very hard
and large scale optimization problems; e.g., see [5].

5.1. General description

The use of genetic algorithms for solving optimiza-
tion problems can be brieFy described as follows. An
initial set, or population, of possible solutions to an
optimization problem is obtained and represented in
vector form. These vectors are often called chromo-
somes and are free to “evolve” in the following way.
Firstly parent chromosomes are randomly chosen from
the initial population: chromosomes having lower (or
higher) values of the objective criterion to be min-
imized (or maximized), respectively, would have a
higher chance of being chosen. O8spring are then re-
produced from either applying a crossover or a muta-
tion operation to these chosen parents. Once a suS-
cient number of such second generation o8spring are
produced, third generation o8spring are further pro-
duced from these second generation o8spring in a sim-
ilar manner. For the reason of preserving the best chro-
mosome of a current generation, an additional step that
one may perform is the elitist step: replace the worst
chromosome of the next generation with the best chro-
mosome of the current generation. This reproduction
process continues for a number of generations. The
expectation is that the objective criterion values of the
o8spring should gradually improve over generations;
i.e., approaching the optimal value.

5.2. Chromosome representation

The performance of a genetic algorithm would cer-
tainly depend on how a possible solution is repre-
sented as a chromosome. In traditional applications of
genetic algorithms, solutions are often represented as
binary vectors; that is, chromosomes with two types
of genes. However, it is more convenient to employ a
“three-gene-type” representation for our problem.

First we point out that for our problem a possi-
ble solution �̂ can be uniquely speci7ed by B̂, b̂, m̂
and {k̂j}B̂j=1. It is because once they are speci7ed,
the corresponding maximum likelihood estimates for
{�̂j; �̂j}B̂j=1 can be uniquely calculated. Thus for the
current problem a chromosome only needs to carry
information about B̂, b̂, m̂ and {k̂j}B̂j=1. A simple
example will be used to illustrate our representation
scheme. Suppose n=20, B̂=2, b̂= {12}, m̂= {2; 1},
k̂ = {k̂1; k̂2}, k̂1 = {6; 10} and k̂2 = {17}. That is,
the log spectrum estimate is composed of two discon-
nected splines separated at !12, and there are two and
one knots in the 7rst and the second spline, respec-
tively. These knots are located at !6, !10 and !17. If
we use “K” to denote a break point gene, “♦”to denote
a knot gene and “·” to denote a normal gene, then the
chromosome for this example is composed of n= 20
genes arranged as

· · · · ·♦ · · · ♦ · K · · · · ♦ · · · :
Empirical evidence suggests that the above represen-
tation scheme is extremely e8ective for the purpose
of using genetic algorithms to minimize our AIC/BIC
criterion. It is most likely due to the fact that the lo-
cation information of the break points and the knots
of a �̂ are explicitly represented.

5.3. Implementation

This section lists the major steps behind the im-
plementation of the genetic algorithm that we use to
minimize the modi7ed AIC(f̂). The steps are:
1. Randomly generate an initial population of S chro-

mosomes.
2. Compute the AIC(f̂) value for each of the S chro-

mosomes.
3. Sort the AIC(f̂) values in descending order. As-

sign rank 1 to the chromosome with the largest
AIC(f̂) value, rank 2 to the one with the second
largest AIC(f̂) value, and so on. Denote the rank
of chromosome i as ri.

4. With probability PCROSS, perform a crossover op-
eration. Otherwise, perform a mutation operation.
• Crossover—one child is reproduced from two
parents: select two parent chromosomes from the
initial population. The probability that chromo-
some i will be selected is ri=(r1+ · · ·+rS). Then
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for each gene location of the child chromosome,
with equal probability, assign it with either the
corresponding father gene or the corresponding
mother gene.

• Mutation—one child is reproduced from one par-
ent: select one parent using the same probabil-
ity law as in crossover. Then for each child gene
location, assign it with either a knot gene with
probability PK, a break point gene with proba-
bility PS, a normal gene with probability PN, or
the corresponding father gene with probability
1− PK − PS − PN.

5. Repeat Step 4 until S child chromosomes are re-
produced. That is, until a whole new generation is
obtained.

6. Apply the elitist step.
7. Repeat Steps 2–6 using the new generation as the

initial population. Then repeat the whole process
until the AIC(f̂) value of the best chromosome
does not change for NSAME generations.

8. The best chromosome of the youngest generation
is taken as the minimizer of AIC(f̂).

In our implementation S=300, PCROSS=0:9, PK=0:1,
PS = 0:02, PN = 0:1 and NSAME = 20.

6. Numerical experiments

This section reports results of those numerical ex-
periments that were conducted for evaluating and com-
paring the practical performance of the proposed log
spectrum estimation procedure with some other pro-
cedures appearing in the literature.

6.1. Settings

Four testing spectra and three di8erent sample sizes
were used. The three sample sizes were 2n=256, 512
and 1024, and the log of the four spectra are displayed
in Fig. 3. These four testing spectra have di8erent
characteristics and have been used by other authors
(e.g., [9,18,24]). Spectrum 1 contains sharp changes
(according to [18], it is an approximation to the spec-
trum of a typical communication signal). Spectrum
2 corresponds to an AR(24) process and it possesses
some broad as well as some 7ne structures that may be
hard to estimate simultaneously. Spectrum 3 is from
an AR(2) process. It has a peak at ! ≈ 0:75 which

can be easily oversmoothed. Finally, Spectrum 4 is a
MA(15001) process with a sharp peak at ! ≈ 	=4.
Detecting this peak is a challenging problem. For com-
plete speci7cations of these four testing spectra, see
for example [24].
For each combination of testing spectrum and sam-

ple size (totally there are 4 × 3 = 12 such combi-
nations), 100 independent series were simulated. For
each of these 100 series, four di8erent log spectrum
estimates were obtained from the following estimation
procedures:
1. drs: the proposed disconnected regression spline

procedure.
2. mwt: the multitaper scale-independent wavelet

soft thresholding procedure proposed by [24].
It is demonstrated in [24] that this multitaper
wavelet thresholding procedure is superior to the
wavelet-based procedures proposed by [9,18].
These wavelet-based procedures are shown to be
very e8ective in terms of recovering highly inho-
mogeneous log spectra.

3. lsp: the “logspline” procedure proposed by [13].
This procedure models the log spectrum by one
single regression spline, and hence it was not de-
signed to handle sharp changes. This procedure
uses a knot deletion-addition algorithm (i.e., not a
genetic algorithm) for searching the number and
locations of the knots of the best 7tting regression
spline.

4. wla: the constant-span weighted local averaging
procedure of [14]. This procedure is a member
of the class of smoothed periodogram estimators
described for example by [2, Sections 5.4–5.6]. It
aims to choose the smoothing span that minimizes
the mean squared error (MSE, de7ned below)
between the true and the estimated log spectra.
This simple procedure should perform well when
the log spectrum does not possess any abrupt
changes.

As one can see that, the above four log spectrum es-
timation procedures are very di8erent in nature and a
direct comparison of them should be interesting.

6.2. Ranking the procedures

In this subsection we describe the approach we
adopted to rank the performances of the procedures.
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Fig. 3. Log of the four testing spectra used in the simulation study.

Table 1
Means and standard deviations (s.d.) of the MSE values under di8erent combinations of spectrum, sample size (2n) and log spectrum
estimation procedures. Also listed are the relative Fisher’s least signi7cant di8erence test rankings (rank). The average rankings for drs,
mwt, lsp and wla are 1.54, 3.13, 2.58 and 2.75, respectively

Spectrum 2n drs mwt lsp wla

Mean s.d. Rank Mean s.d. Rank Mean s.d. Rank Mean s.d. Rank

1 256 0.6107 0.1980 1 1.8381 0.2817 4 1.2969 0.3877 3 0.7101 0.1395 2
512 0.3496 0.0995 1 0.8723 0.1036 3 0.9739 0.2426 4 0.4732 0.0764 2
1024 0.1711 0.0611 1 0.4175 0.0359 3 0.9586 0.3041 4 0.3161 0.0406 2

2 256 0.6577 0.1155 2 2.2963 1.2482 4 0.7253 0.1550 3 0.4763 0.1438 1
512 0.4954 0.0832 2.5 1.0074 0.6138 4 0.5155 0.0778 2.5 0.2729 0.0538 1
1024 0.3425 0.0502 2.5 0.3348 0.1976 2.5 0.4484 0.0700 4 0.1623 0.0313 1

3 256 0.1439 0.0578 2 0.1634 0.0542 2 0.1767 0.0939 2 0.2300 0.1413 4
512 0.0840 0.0265 1.5 0.1035 0.0258 3 0.0871 0.0806 1.5 0.1371 0.0436 4
1024 0.0448 0.0185 1.5 0.0580 0.0145 3 0.0398 0.0190 1.5 0.0808 0.0233 4

4 256 0.1166 0.0467 1 0.2020 0.0727 3 0.1648 0.0862 2 0.2544 0.1600 4
512 0.0654 0.0235 1 0.1072 0.0256 3 0.0853 0.0391 2 0.1387 0.0478 4
1024 0.0425 0.0132 1.5 0.0627 0.0136 3 0.0432 0.0189 1.5 0.0784 0.0246 4

The numerical quantity that was used to mea-
sure the quality of a log spectrum estimate f̂ is the
mean squared error: MSE(f̂)= (1=n)

∑n−1
l=0 {f(!l)−

f̂(!l)}2. For each combination of test spectrum and
sample size, we computed the MSE values for all f̂’s
that we obtained, and the results are summarized in
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Table 1 in terms of means and standard deviations. We
have also performed Fisher’s least signi7cant di8er-
ence test (e.g., see [4]) to test if the di8erence between
the mean MSE values of two procedures is signi7cant
or not. The signi7cance level used was 5%. Based on
the results of this test, we ranked the four procedures in
the following manner. If the meanMSE value of a pro-
cedure is signi7cantly less than the mean MSE values
of the remaining three procedures, then this procedure
will be assigned a rank of 1. If the mean MSE value of
a procedure is signi7cantly less than two but greater
than one of the remaining three procedures, then this
procedure will be assigned a rank of 2. Similarly for
ranks 3 and 4 (i.e., 1 is the best while 4 is the worst).
On the other hand, if the mean MSE values of two
procedures are not signi7cantly di8erent, then these
two procedures will share the same averaged rank. For
example, if the mean MSE values of two procedures
are not signi7cantly di8erent but are signi7cantly less
than the MSE values of the remaining two proce-
dures, then these two procedures will be assigned the
same averaged rank of (1 + 2)=2 = 1:5. All resulting
rankings are also provided in Table 1. This ranking
scheme has been adopted by previous articles (e.g., see
[15,25]).
We chose MSE as the measure of performance

because it is commonly accepted as a reasonable
measure of the di8erence between the true and an
estimated log spectra. The MSE does have, to a rea-
sonable extent, the capability of revealing di8erences
in 7ne structures and peaks. For instance, consider
Spectrum 2. The MSE-based ranking presented in
Table 1 does in fact agree with the conclusion ob-
tained from visually inspecting Fig. 4 (see below
for the description of Fig. 4) that wla performs bet-
ter than the other 3 techniques. The above ranking
system, which is based on the Fisher’s least signi7-
cant di8erence test and the MSE measure, provides
a reasonable quantitative means for ranking the four
procedures.

6.3. Results

The relative performances of the four procedures,
of course, depend on the structure of the true spec-
trum. For Spectrum 1, drs gave the best results, due
to the fact that the proposed disconnected regression
spline model is designed to handle sharp changes. For

mwt, it su8ered from Gibb’s e8ects; for lsp, it over-
smoothed as it approximated the log spectrum with
one spline; and for wla, due to the right-most sharp
rise, undersmoothed the target. For Spectrum 2, all
procedures, with the exception of wla, su8ered from
oversmoothing. For Spectrum 3, the two spline-based
procedures, drs and lsp, gave similar and better re-
sults. They could recover the peak reasonably well,
while both mwt and wla oversmoothed it, with mwt
to a lesser extent. Lastly, for Spectrum 4, both mwt
and wla often missed the sharp change and hence gave
poor MSE readings. While not shown in Fig. 5, quite
often drs did capture this sharp change and hence gave
overall the best results.
From the above observations, no procedure can be

claimed as universally the best nor the worst. How-
ever, the Fisher’s Least Signi7cant Di8erence Test
rankings do suggest that drs is, on average, superior
to others: the overall average test rankings (see be-
low) for the procedures drs, mwt, lsp and wla are 1.54,
3.13, 2.58 and 2.75, respectively. The overall average
ranking of a procedure is the average of all the rank-
ings that the procedure scored for all combinations of
test spectrum and sample size.
We also did the following in order to provide

visual evaluation on the performances of the four
procedures. For the case of 2n = 1024 and for each
estimation procedure, we 7rst ranked the previously
computed MSE values, and then plotted those log
spectrum estimates that correspond to the 50th small-
est MSE value in Figs. 4 and 5. These estimates can
be taken as “typical” estimates of the four procedures.
From a visual sense, these plots agree quite well
with the average test rankings given in the previous
paragraph.
We report the average computation times for the

four procedures in Table 2. From the table one can
see that drs is more computationally intensive than the
other three procedures.
Although we do not have a universally best pro-

cedure, it seems that the proposed procedure drs
is a good and conservative procedure to use. It is
because, in this experiment, not only it never gave
the worst performance, but it also came 7rst for
many cases and scored the best average test rank-
ings. Also, it performed better than the other methods
when sharp changes are present in the spectrum.
However, because of its higher complexity, drs is
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Fig. 4. Plots of various log spectrum estimates (dotted lines) when 2n = 1024 and the true log spectra for Testing Spectra 1 (top two
rows) and 2 (bottom two rows).

more suitable for applications that allow o8-line
processing.

6.4. A second experiment

To further demonstrate the good performance of
the proposed procedure drs for recovering log spectra

with inhomogeneous structures, we conducted a sec-
ond experiment.
We 7rst generated 100 series with 2n = 256 us-

ing Spectrum 1. Then for each of these 100 series,
the procedures mwt, lsp and wla are applied to es-
timate the log spectrum. We also applied drs to
estimate the spectrum, but with a smaller sample
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Fig. 5. Plots of various log spectrum estimates (dotted lines) when 2n = 1024 and the true log spectra for Testing Spectra 3 (top two
rows) and 4 (bottom two rows).

size: 75% of 2n, which is 192. The whole exper-
imental procedure was repeated two more times
with 2n = 512 and 2n = 1024. Results are sum-
marized in Table 3 in a similar manner as before.
From this table it is evident that the proposed

procedure drs, although computationally more ex-
pensive, is more reliable for spectra with inho-
mogeneous structures even when the sample size
employed is smaller than the one used in other
procedures.
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Table 2
Average computation times, in seconds, for the four procedures.
All timings were taken from a Sparc Ultra-60 machine

2n drsa mwt lsp wla

256 4 2 2 2
512 12 2 3 2
1024 31 2 4 2

aNote that the time quoted for drs is for one iteration, with
300 chromosomes in each generation. Typically the number of
iterations for drs to 7nish is between 20 and 60.

Table 3
Similar to Table 1 but for the MSE values obtained from the second experiment described in Section 6.4. Notice that drs only used 75%
of the observations. The average rankings for drs, mwt, lsp and wla are 1.33, 3.33, 3.67 and 1.67, respectively

Spectrum 2n drs with 75% of 2n mwt lsp wla

Mean s.d. Rank Mean s.d. Rank Mean s.d. Rank Mean s.d. Rank

1 256 0.8824 0.2872 2 1.8648 0.2923 4 1.3172 0.4063 3 0.7184 0.1561 1
512 0.3911 0.1011 1 0.8387 0.1135 3 1.0028 0.3351 4 0.4892 0.0778 2
1024 0.2087 0.0741 1 0.4196 0.0427 3 1.0083 0.3508 4 0.3048 0.0386 2
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