
Signal Processing 84 (2004) 1255–1266
www.elsevier.com/locate/sigpro

Kernel smoothing of periodograms under
Kullback–Leibler discrepancy

Jan Hannig, Thomas C.M. Lee∗

Department of Statistics, Colorado State University, Fort Collins, CO 80523-1877, USA

Received 5 June 2003; received in revised form 31 March 2004

Abstract

Kernel smoothing on the periodogram is a popular nonparametric method for spectral density estimation. Most important
in the implementation of this method is the choice of the bandwidth, or span, for smoothing. One idealized way of choosing
the bandwidth is to choose it as the one that minimizes the Kullback–Leibler (KL) discrepancy between the smoothed
estimate and the true spectrum. However, this method fails in practice, as the KL discrepancy is an unknown quantity. This
paper introduces an estimator for this discrepancy, so that the bandwidth that minimizes the unknown discrepancy can be
empirically approximated via the minimization of it. It is shown that this discrepancy estimator is consistent. Numerical
results also suggest that this empirical choice of bandwidth often outperforms some other commonly used bandwidth choices.
The same idea is also applied to choose the bandwidth for log-periodogram smoothing.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Smoothing the periodogram or the log-periodogram
is a popular method for performing nonparametric
spectral density estimation. Various approaches have
been proposed. These include spline smoothing (e.g.,
[9,13,19]), kernel smoothing (e.g., [4,10,11,18]) and
wavelet techniques (e.g., [5,15,20]). The approach that
this paper considers is kernel smoothing. Some ap-
pealing features of this approach are that it is sim-
ple to use, easy to understand and straightforward to
interpret.
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One important component of the kernel smooth-
ing approach is the choice of the bandwidth for
smoothing. This paper proposes a bandwidth selec-
tion method that attempts to locate the bandwidth
that minimizes the unknown Kullback–Leibler (KL)
discrepancy between the smoothed estimate and the
true spectrum. The idea behind the proposed method
is as follows. An estimator for the unknown KL dis-
crepancy is Brst constructed for the class of spectrum
estimates (i.e., kernel-smoothed periodograms) that
this paper considers. It is shown that this discrepancy
estimator is consistent under a commonly used model
for periodograms. Then the bandwidth that minimizes
this discrepancy estimator is chosen as the Bnal band-
width. As mentioned in [14], the rationale is that the
bandwidth that minimizes the discrepancy estimator
should also approximately minimize the unknown
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discrepancy. Also, Chow [3, pp. 293–294] argues that
the KL discrepancy is a better distance measure than
the more commonly used squared distance measure.
This point will be elaborated more later.

The rest of this paper is organized as follows. Sec-
tion 2 provides some background material on the pe-
riodogram and the KL discrepancy. The proposed KL
discrepancy estimator, together with some related pre-
vious work, are presented in Section 3. Section 4
brieEy discusses the smoothing of log-periodogram.
Some empirical and theoretical properties of the pro-
posed method are reported in Sections 5 and 6, re-
spectively. Conclusions are oFered in Section 7, while
technical details are deferred to the appendix.

2. Background

2.1. Periodogram smoothing

Suppose that {xt} is a real-valued, zero mean sta-
tionary process with unknown spectral density f, and
that a Bnite-sized realization x0; : : : ; x2n−1 of {xt} is
observed. The goal is to estimate f by using those
observed xts. The periodogram is deBned as

I(!) =
1

2	× 2n

∣∣∣∣∣
2n−1∑
t=0

xt exp (−i!t)

∣∣∣∣∣
2

;

i =
√−1; !∈ [0; 2	):

To simplify notation, write !j =2	j=(2n), fj =f(!j)
and Ij=I(!j). Since the spectral density f is symmet-
ric about != 	, in the sequel the focus will be on fj
for j= 0; : : : ; n− 1. Also, as f is periodic with period
2	, one has f−j =fj and I−j = Ij for j= 1; : : : ; n− 1.

A frequently adopted model for Ij is (e.g., see
[4,10,15,17])

Ij = fj�j; j = 0; : : : ; n− 1; (1)

where the �js are independent standard exponential
random variables. Therefore E(Ij) =fj and var(Ij) =
f2
j . Due to its unacceptably large variance, Ij is

seldom used as an estimate of fj.
One possible way for obtaining better estimates

for fj is to smooth the Ijs. This paper considers the

following kernel estimator for fj:

f̂j =
2n−1∑
m=−n

Kh (!m − !j)Im

/
2n−1∑
l=−n

Kh (!l − !j);

j = 0; : : : ; n− 1: (2)

In the above Kh(·)= 1
h K( ·

h), where the kernel func-
tion K is (usually taken as) a symmetric probability
density function and the bandwidth h is a nonnega-
tive smoothing parameter that controls the amount of
smoothing. Note that f̂j is a function of h, but, for
simplicity, this dependence is suppressed from its no-
tation. It is well known that the choice of h is much
more crucial than the choice ofK (e.g., see [22]). Also,
in most other kernel smoothing problems the limits of
the two summations in (2) are 0 and n− 1. However,
since in the present setting boundary eFects can be
handled by periodic smoothing, the limits are changed
from 0 and n− 1 to −n and 2n− 1, respectively.

The estimator f̂j can also be interpreted as a
weighted average of the Ijs. It is because one could
write

f̂j =
2n−1∑
m=−n

Wm−jIm with

Wm−j =
Kh(!m − !j)∑2n−1

l=−n Kh(!l − !j)
: (3)

Notice that the weights Wms sum to unity.

2.2. Why KL discrepancy?

The KL discrepancy for measuring the distance be-
tween two probability density functions (pdfs) g1(x)
and g2(x) is deBned as

d(g1; g2) =
∫
g1(x) log

g1(x)
g2(x)

dx

(e.g., see [2]). Note that d(g1; g2) �= d(g2; g1).
In order to use d(g1; g2) for comparing a true

spectrum f and an estimate f̂, one needs to com-
pare them frequency by frequency. At frequency !j,
the pdf gf(x) corresponding to f is, under model
(1), an exponential distribution with mean fj. That
is, gf(x) = exp(−x=fj)=fj; x¿ 0. For f̂, a natural
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candidate for the corresponding pdf is exponential
with mean f̂j. Denote this pdf as gf̂(x), and thus

gf̂(x)=exp(−x=f̂j)=f̂j; x¿ 0. We choose to measure

the distance between f and f̂ at frequency !j with

d(gf̂; gf) =
∫

exp(−x=f̂j)
f̂j

log
exp(−x=f̂j)=f̂j
exp(−x=fj)=fj dx

=
f̂j
fj

− log
f̂j
fj

− 1:

One could also use d(gf; gf̂) instead of d(gf̂; gf),
but for the reason given in Appendix A, we choose
d(gf̂; gf). Therefore our overall KL discrepancy for
measuring the distance between the whole spectrum
f and f̂ is

�KL(f̂; f) =
1
n

n−1∑
j=0

(
f̂j
fj

− log
f̂j
fj

− 1

)
:

Our target is to choose the h that minimizes�KL(f̂; f).
Notice that �KL(f̂; f) is an unknown quantity, so di-
rect minimization is not possible.

A more frequently used discrepancy measure, based
on the L2 norm, is

�L2 (f; f̂) =
1
n

n−1∑
j=0

(fj − f̂j)2:

However, as discussed in [3], �KL(f̂; f) is often a
more relevant measure than �L2 (f; f̂). It is because
the former considers the distance for the whole distri-
bution while the latter only considers the mean. Also,
since �KL(f̂; f) has the same form as the theoretical
deviance, it utilizes the asymptotic likelihood of the
periodogram. Therefore, bandwidth selection meth-
ods that are targeting �KL(f̂; f) (or E{�KL(f̂; f)})
seem to be more desirable than those that are targeting
�L2 (f; f̂) (or E{�L2 (f; f̂)}).

3. Estimating the KL discrepancy

This section presents the main contribution
of this paper, namely, a consistent estimator for
�KL(f̂; f). This estimator is denoted as �̂h;k , and it is

given by

�̂h;k =
1
n

n−1∑
j=0

{
2k∑k

m=−k Ij+m

(
f̂j −

k∑
m=−k

Wm−jIj+m

)

+
k∑

m=−k

Wm−j − log
f̂j
Ij

+ �− 1

}
;

where � ≈ 0:577216 is Euler’s constant and k is a
pre-speciBed positive integer parameter whose value
is chosen independent of n. It will be shown in The-
orem 1 that its eFect is asymptotically negligible. We
propose choosing h as the minimizer of �̂h;k . Empirical
properties of our estimator are reported in Section 5,
while its consistency is established in Section 6.

3.1. Construction of �̂h;k

This subsection outlines the construction of �̂h;k .
The goal is to seek an unbiased estimator for
�KL(f̂; f).

First realize that estimating �KL(f̂; f) is equivalent
to estimating the two quantities, log(f̂j=fj) and f̂j=fj,
for all j. We estimate the former by log(f̂j=Ij) − �, as
E{log(f̂j=Ij) − �} = E{log(f̂j=fj)}. The latter, due to
the presence of 1=fj, poses a bigger challenge. It is
because under model (1) E(1=Ij) = ∞, and so f̂j=Ij
cannot be used as a building block for estimating
f̂j=fj. To overcome this diMculty, we make use of the
fact that if f is locally smooth, then fj−k : : : fj+k are
(approximately) identical for small k. This implies
that the periodogram ordinates Ij−k ; : : : ; Ij+k are ap-
proximately independent and identically distributed
as exponential with mean fj. Therefore we have
E{1=(

∑k
m=−k Ij+m)} ≈ 1=(2kfj) and hence 1=fj can

be estimated by 2k=
∑k

m=−k Ij+m. Thus, there are two
major advantages of introducing k: (1) it overcomes
the problem of inBnite expectation E(1=Ij) = ∞, and
(2) it can be treated as a device for controlling the
bias and variance of our estimator for 1=fj.

To proceed we decompose f̂j=fj into two parts:

f̂j
fj

=
k∑

m=−k

Wm
Ij+m
fj

+
(f̂j −∑k

m=−k WmIj+m)

fj
:

We estimate the Brst part by its expectation, i.e.,∑k
m=−k Wm. Since that the numerator of the second
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part and
∑k

m=−k Ij+m are independent, and that

E(2k=
∑k

m=−k Ij+m) ≈ 1=fj, we estimate the second

part by 2k(f̂j − ∑k
m=−k WmIj+m)=(

∑k
m=−k Ij+m).

Finally, by replacing log(f̂j=fj) and f̂j=fj in the ex-
pression of �KL(f̂; f) with these estimates, we obtain
�̂h;k .

3.2. Related work

A cross-validatory bandwidth selection criterion
called CVLL has been studied by [1,7,8]. In partic-
ular, it is shown in [8] that CVLL is asymptotically
equivalent to E{�KL(f; f̂)} (not E{�KL(f̂; f)}).
However, it seems that �KL(f; f̂) (or �KL(f̂; f)) is
to be preferred to E{�KL(f; f̂)} (or E{�KL(f̂; f)}).
It is because �KL(f; f̂) measures the distance be-
tween f and f̂ for the data set at hand, rather than
for the average over all possible data sets.

More recently, [16] propose a generalized cross-
validation (GCV)-based bandwidth selection method
that also targets �KL(f̂; f). The idea is to esti-
mate �KL(f̂; f) by cross-validating a gamma de-
viance function. However, no theoretical results are
presented.

4. Log-periodogram smoothing

The above idea of KL discrepancy estimation
can also be applied to choose the bandwidth for
log-periodogram smoothing. The Brst step is to trans-
form the multiplicative model (1) into an additive
model by taking a logarithmic transform:

yj = log Ij + �= logfj + �j; l= 0; : : : ; n− 1;

�j : independent zero mean random variables

with probability density function

p�(x) = exp{x − �− exp(x − �)}:
Let g = logf be the log-spectrum and ĝ be its ker-
nel smoothing estimator; i.e., ĝj =

∑2n−1
m=−n Wm−jym.

It is straightforward to derive the following KL dis-
crepancy for ĝ and g:

�′
KL(ĝ; g) =

1
n

n−1∑
j=0

{gj − ĝj + exp(ĝj − gj) − 1}:

Using the same technique as in Section 3.1, we
derived the following estimator �̂′

h;k for �′
KL(ĝh; g):

�̂′
h;k =

1
n

n−1∑
j=0

{
yj − ĝj + C′

× exp

(
ĝj −

k∑
m=−k

cmyj+m

)
− 1

}
;

where

cj =
1

2k + 1
+Wj −

k∑
m=−k

Wm

2k + 1
and

C′ = ��
k∏

m=−k

�(1 +Wm)
�(1 +Wm − cm)

:

It can be shown that, along the line of Theorems 1 and
2 below, �̂′

h;k is consistent for �′
KL(ĝ; g).

5. Finite sample properties

A numerical experiment was conducted for compar-
ing the practical performance of the proposed band-
width selection method with four other methods found
in the literature. These other methods are (i) the CVLL
and (ii) the GCV methods discussed in Section 3.2;
(iii) the SES criterion which appeared in an unpub-
lished report of Palmer (see [7]); and (iv) the R̂(p)
criterion proposed by Lee [10]. The SES criterion uses
cross-validation to estimate E{�L2 (f; f̂)}, while R̂(p)
is an unbiased estimator for E{�L2 (f; f̂)}. Although
these Bve methods are not targeting at the same dis-
crepancy measure, a direct comparison of them would
still be interesting. Throughout the whole experiment,
k is set to 5 for the proposed method.

5.1. Setup

Four test examples and three diFerent sample sizes
were used. The three sample sizes were n= 200, 400
and 800, and the four test examples were from the
ARMA(!; ") model

xt + a1xt−1 + · · · + a!xt−!

=$t + b1$t−1 + · · · + b"$t−"; $t ∼ N (0; 1)
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Fig. 1. Boxplots for various log RKL values. In each panel, the boxplots are corresponding, respectively, to, from left to right, the proposed
method, the CVLL, GCV, SES and R̂(p) criteria.

with parameters given by: Example 1 was AR(3) with
a1 = −1:5, a2 = 0:7, and a3 = −0:1; Example 2 was
AR(3) with a1 =0:9, a2 =0:8 and a3 =0:6; Example 3
was MA(3) with b1 = 0:9, b2 = 0:8 and b3 = 0:6;
and Example 4 was MA(4) with b1 = −0:3, b2 =
−0:6, b3 =−0:3 and b4 = 0:6. These testing examples
have previously been used by many authors; e.g., see
[4,7,10,17,19]. The kernel function used was K(x) =
3
4 (1 − x2); x∈ [0; 1]. It is the optimal kernel of order
(0,2) derived in [6].

For each of the 12 combinations of test example
and sample size, 500 independent series were sim-
ulated, and the corresponding periodograms were
computed. Then, for each of these generated peri-
odograms, the above Bve methods were applied to
compute the corresponding bandwidths. In addition,
two practically unobtainable bandwidths were also
computed. They are hKL, the bandwidth that minimizes
�KL(f̂; f), and hL2 , the bandwidth that minimizes
�L2 (f; f̂).

Finally, the following two ratios were computed for
every bandwidth h that was selected by any one of the
Bve methods:

RKL =
�KL(f̂; f)

�KL(f̂ hKL ; f)
and RL2 =

�L2 (f; f̂)

�L2 (f; f̂ hL2
)

The Brst ratio RKL is used to evaluate the perfor-
mance of h with respect to �KL(f̂; f): the smaller

is its value, the better is the performance. The sec-
ond ratio RL2 has a similar interpretation, but is for
�L2 (f; f̂). Since CVLL is targeting at E{�KL(f; f̂)}
but not E{�KL(f̂; f)}, we have also computed a sim-
ilar third ratio that is based on �KL(f; f̂). However,
as this third ratio gives the same empirical conclu-
sions as for RKL, the corresponding results will not be
reported here.

For those cases that are associated with n = 400,
boxplots of the log of the RKL and RL2 values are
given in Figs. 1 and 2. Boxplots for other cases are
somewhat similar and are hence omitted.

We also performed paired Wilcoxon tests to test the
signiBcance of the diFerence between the median RKL

(and RL2 ) values of any two methods. The signiBcance
level used was 1%, and the relative rankings, with 1
being the best, are listed in Tables 1 and 2. While
ranking the methods in this manner is not perfectly
legitimate, it does provide an indicator of the relative
merits of the methods, and has also been used in other
studies; e.g., see [12,13,21].

5.2. Empirical conclusions

With RKL the averaged Wilcoxon test rankings
for the proposed method, the CVLL, GCV, SES and
R̂(p) criteria are 1.50, 2.54, 1.96, 4.75 and 4.25,
respectively, while with RL2 the averaged rankings
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Fig. 2. Similar to Fig. 1 but for log RL2 .

Table 1
Wilcoxon rankings for comparing the RKL values

Example n = 200 n = 400 n = 800

proposed CVLL GCV SES R̂(p) proposed CVLL GCV SES R̂(p) proposed CVLL GCV SES R̂(p)

1 1.5 3 1.5 5 4 2.5 2.5 1 5 4 2.5 2.5 1 5 4
2 1 3 2 5 4 1.5 3 1.5 5 4 2 2 2 5 4
3 1 2.5 2.5 4.5 4.5 1 2.5 2.5 4.5 4.5 2 2 2 4.5 4.5
4 1 2.5 2.5 4.5 4.5 1 2.5 2.5 4.5 4.5 1 2.5 2.5 4.5 4.5

Table 2
Wilcoxon rankings for comparing the RL2 values

Example n = 200 n = 400 n = 800

proposed CVLL GCV SES R̂(p) proposed CVLL GCV SES R̂(p) proposed CVLL GCV SES R̂(p)

1 1.5 3 1.5 5 4 2 2 2 5 4 2 2 2 5 4
2 1 2.5 2.5 5 4 1 3.5 3.5 3.5 3.5 1.5 1.5 4 4 4
3 4.5 4.5 2.5 2.5 1 4.5 4.5 3 1.5 1.5 4 5 3 1.5 1.5
4 3.5 5 3.5 2 1 5 4 3 1.5 1.5 5 4 3 1.5 1.5

are 2.96, 3.46, 2.79, 3.17 and 2.63, respectively.
Therefore, there are some evidence that the proposed
method outperformed other methods if the target dis-
crepancy is �KL(f̂; f). It is interesting to see that
even when the target discrepancy is �L2 (f; f̂), the
proposed method gave or shared the best results for

Examples 1 and 2. Also, the widths of the boxplots in
Figs. 1 and 2 seem to suggest that the three KL-based
methods gave more stable performances than the two
L2-based methods. It is perhaps partially due to the
fact that the KL discrepancy is more stable than the
L2 measure under heteroscedasticity.
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5.3. Log-periodogram smoothing

We have also empirically investigated the use
of the minimizer of �̂′

h;k as the bandwidth for
log-periodogram smoothing. We have compared
this choice of bandwidth with other bandwidth se-
lection methods that are targeting the L2 measure
E
∑

(gj − ĝj)2=n. These other methods include
cross-validation and the unbiased risk estimation ap-
proach of Lee [10]. Unlike the case for periodogram
smoothing, the use of �̂′

h;k only demonstrates a mi-
nor improvement over the other L2-based methods.
It is probably due to the fact that E�′

KL(ĝ; g) and
E
∑

(gj − ĝj)2=n are asymptotically equivalent.

6. Theoretical properties

We studied the theoretical properties of our estima-
tor, under model (1), in terms of'=�̂h;k−�KL(f̂; f).
We summarize our results in two theorems. The Brst
theorem provides nonasymptotic bounds for E(') and
var('), which can be used to show that, under some
regularity conditions, both E(') and var(') go to
zero as n → ∞. However, such a result is not very
useful unless �KL(f̂; f) goes to zero at a rate slower
than ' does. Our second theorem establishes the con-
ditions under which �KL(f̂; f) decays slower than '.
That is, it enables us to show that �̂h;k is consistent
for �KL(f̂; f). The proofs of the theorems are given
in Appendices B and C. Although these results are
established under the approximation model (1), we
believe that they do provide valuable insights to the
performance of the proposed estimator.

Theorem 1. Suppose that f is bounded away from
0 and ∞, the kernel K is unimodal, symmetri-
cal and square integrable, and k¿ 1. Then, under
model (1),

|E(')|6max
j

(fj)w
(

1
f
;
2	k
n

)
(4)

and

var(')6
C1

n
+
C2k
n

w
(

1
f
;
2	k
n

)
+
C3k3

n3h2 +
C4

n2h
;

(5)

where

C16 30
maxj (fj)2

minj (fj)2 + 	2=2; C26 49
maxj (fj)2

minj (fj)2 ;

C3, C4 are constants depending only on the kernel K ,
and w is the modulus of continuity (10).

One should notice that, from (4) and (5), the eFect
of the pre-chosen k on E(') and var(') vanishes as
n goes to ∞.

Theorem 2. In addition to the assumptions stated in
Theorem 1, we assume that f is twice di<erentiable,
the derivativef′ is bounded,f′′(x) does not vanish on
some interval, and there is a nonincreasing sequence
of hn such that hn → 0 and hn = Cn−! for some
constant C and !∈ {(0; 1

8 ) ∪ ( 1
2 ;∞)}. Then

�̂h;k − �KL(f̂; f)

�KL(f̂; f)
→ 0 in probability: (6)

7. Conclusions

In this paper a bandwidth selection method for
periodogram smoothing is proposed. The proposed
method aims to choose the bandwidth that minimizes
the KL discrepancy between the estimated and the
true spectra. Some theoretical results are presented
for supporting the use of this method. Results from
numerical experiments seem to suggest that the pro-
posed method is superior to four other existing band-
width selection methods when the KL discrepancy is
under consideration.

Appendix A. Why d (gf̂ ; gf ) but not d (gf ; gf̂ )?

Using d(gf̂; gf) to measure the distance between fi
and f̂j gives �KL(f̂; f) as the overall KL discrepancy
between f and f̂, while using d(gf; gf̂) gives

�KL(f; f̂) =
1
n

n−1∑
j=0

(
fj
f̂j

− log
fj
f̂j

− 1

)
:

Now using the Taylor series approximation
y − logy − 1 ≈ (y − 1)2=2 for y close to 1,
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we have

�KL(f̂; f) ≈ 1
2n

n−1∑
j=0

(
fj − f̂j
fj

)2

and

�KL(f; f̂) ≈ 1
2n

n−1∑
j=0

(
fj − f̂j
f̂j

)2

:

Our belief is that �KL(f̂; f) is a better measure to
use. It is because in the above approximation it uses a
Bxed quantity, the denominator term fj, to adjust for
the variance fj − f̂j for diFerent !j, while �KL(f; f̂)
uses a random quantity f̂j. Also, our numerical work
shows that the behaviors of �KL(f̂; f) and �KL(f; f̂)
are remarkably similar for h that are not far from the
optimal value.

Appendix B. Proof of Theorem 1

To simplify notation, denote f̂k
j =

∑k
m=−k WmIj+m.

Also, decompose ' as '= 1
n

∑n−1
j=0 'j, where

'j = log Ij − (logfj − �) +
2k(f̂j − f̂k

j )∑k
m=−k Ij+m

+
k∑

m=−k

Wm − f̂j
fj
:

Proof of (4). By taking the expectation of 'j and us-
ing the fact that the observations are independent, we
get

E('j) = E(f̂j − f̂k
j )E

(
2k∑k

m=−k Ij+m

)

+
k∑

m=−k

Wm − E(f̂j)
fj

: (B.1)

Denote xj = minj(fj−k ; : : : ; fj+k) and yj = maxj
(fj−k ; : : : ; fj+k). Combining

1
yj
6E


2k

(
k∑

m=−k

Ij+m

)−1

6 1

xj
(B.2)

and (B.1) we conclude

|E('j)|6 E(f̂j)w
(

1
f
;

2	k
n

)

6max
j

(fj)w
(

1
f
;

2	k
n

)
; (B.3)

where w is the modulus of continuity deBned for any
continuous function g:

w(g; �) = sup{|g(x) − g(y)|; |x − y|6 �}: (B.4)

Eq. (4) now follows from averaging (B.3) over j.

Proof of (5). We Brst split the term 'j = Xj − Yj
+ Zj +

∑k
m=−k Wm, where

Xj = log Ij − (logfj − �); Yj =
f̂j
fj
;

Zj =
2k(f̂j − f̂k

j )∑k
m=−k Ij+m

:

Firstly,

var


1
n

n∑
j=1

'j




6 3 var


1
n

n∑
j=1

Xj


+ 3 var


1
n

n∑
j=1

Yj




+3 var


1
n

n∑
j=1

Zj


 (B.5)

and under model (1)

var


1
n

n∑
j=1

Xj


=

	2

6n
: (B.6)

Secondly,

var


1
n

n∑
j=1

Yj


=

1
n2

n∑
i=1

n∑
j=1

cov

(
f̂ i

fi
;
f̂j
fj

)
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=
1
n2

n∑
i=1

n∑
j=1

cov
(∑2n−1

p=−n Wp−iIp;
∑2n−1

q=−n Wq−jIq
)

fifj

6
1

n2 minj(fj)2

n∑
i=1

n∑
j=1

2n−1∑
p=−n

Wp−iWp−j var(Ip)

6
3 maxj(fj)2

nminj(fj)2 : (B.7)

Thirdly, Bx i6 j. In order to be able to estimate the
last term we need to calculate cov(Zi; Zj).

DeBne the following index sets:

Ii; j; k = {x∈Z : − k6 x6min(k; j − i − k − 1)};

Ji; j; k = {x∈Z : − min(k; j − i − k − 1)6 x6 k};

Ki; j; k = {x∈Z : − n6 x6 2n− 1; |x − i|¿k;

|x − j|¿k}

and calculate

cov(Zi; Zj)

=cov

(
2k
∑

m∈Ji; j; k Wj−i+mIj+m∑k
m=−k Ii+m

;
2k
∑

m∈Ii; j; k Wi−j+mIi+m∑k
m=−k Ij+m

)

+
∑

p∈Ki; j; k

∑
q∈Ki; j; k

cov

(
2kWp−iIp∑k
m=−k Ii+k

;
2kWq−jIq∑k
m=−k Ij+k

)
:

(B.8)

Notice,

2k
∑

m∈Ji; j; k Wj−i+mIj+m∑k
m=−k Ij+m

6 2k max
m∈Ji; j; k

Wj−i+m

= 2kWmax(k+1; j−i−k);

where the last equality follows from the fact that the
smoothing kernel K is symmetric unimodal.

Thus,

cov

(
2k
∑

m∈Ji; j; k Wj−i+mIj+m∑k
m=−k Ii+m

;
2k
∑

m∈Ii; j; k Wi−j+mIi+m∑k
m=−k Ij+m

)

6 4k2W 2
max(k+1;|j−i|−k):

This inequality remains valid also for i¿ j by
symmetry. Further notice that

Wj ≈ 	K(	j=nh)
nh

6
	K(0)
nh

;
∞∑

m=−∞
W 2
m

≈ 	
∫
K2(!) d!
nh

: (B.9)

Therefore there are constants C3; C4 depending only
on the kernel K , such that

1
n2

n∑
i=1

n∑
j=1

cov

×
(

2k
∑

m∈Ji; j; k Wj−i+mIj+m∑k
m=−k Ii+m

;
2k
∑

m∈Ii; j; k Wi−j+mIi+m∑k
m=−k Ij+m

)

6
1
n2

n∑
i=1

n∑
j=1

4k2W 2
max(k+1;|j−i|−k)6

(2k)3

n
W 2
k+1

+
1
n2

n∑
i=1

∞∑
m=−∞

W 2
m6

C3k3

n3h2
+

C4

n2h
:

(B.10)

To estimate the second term on the right-hand side
of (B.8), Brst recall the Eq. (B.2), conclude

var

(
2k∑k

m=−k Ij+k

)

6
1

x2
j (2k + 1)

+
1
x2
j

− 1
y2
j

6
1

minj(fj)2

{
1

2k + 1
+ 2w

(
1
f
;

2	k
n

)}
;

and realize that | cov(X; Y )|6√var(X ) var(Y ) for
any random variables X , Y . Then Bx p; q∈Ki;j; k and
calculate

cov

(
2kWp−iIp∑k
m=−k Ii+k

;
2kWq−jIq∑k
m=−k Ij+k

)
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=E

{
cov

(
2kWp−iIp∑k
m=−k Ii+k

;
2kWq−jIq∑k
m=−k Ij+k

|Ip; Iq
)}

+ cov

{
E

(
2kWp−iIp∑k
m=−k Ii+k

|Ip; Iq
)
;

E

(
2kWq−jIq∑k
m=−k Ij+k

|Ip; Iq
)}

: (B.11)

If |i − j|¿ 2k we have

cov

(
2kWp−iIp∑k
m=−k Ii+k

;
2kWq−jIq∑k
m=−k Ij+k

|Ip; Iq
)

= 0:

Similarly, if |i − j|6 2k

E

{
cov

(
2kWp−iIp∑k
m=−k Ii+k

;
2kWq−jIq∑k
m=−k Ij+k

|Ip; Iq
)}

6




Wp−iWq−jfpfq
1

minj(fj)2

×
{

1
2k + 1

+ 2w
(

1
f
;
2	k
n

)}
if p �= q;

Wp−iWq−j2f2
p

1
minj(fj)2

×
{

1
2k + 1

+ 2w
(

1
f
;
2	k
n

)}
if p= q

and

∑
p∈Ki; j; k

∑
q∈Ki; j; k

cov

(
2kWp−iIp∑k
m=−k Ii+k

;
2kWq−jIq∑k
m=−k Ij+k

)

6
2 maxj(fj)2

minj(fj)2

{
1

2k + 1
+ 2w

(
1
f
;

2	k
n

)}
:

Since there is no more than (4k + 1)n pairs of (i; j)
satisfying |i − j|6 2k, we conclude

1
n2

n∑
i=1

n∑
j=1

∑
p∈Ki; j; k

∑
q∈Ki; j; k

cov

(
2kWp−iIp∑k
m=−k Ii+k

;
2kWq−jIq∑k
m=−k Ij+k

)

6
2 maxj(fj)2

minj(fj)2

{
2
n

+
8k + 2
n

w
(

1
f
;

2	k
n

)}
:

(B.12)

Finally, estimate the second part of (B.11). If
p �= q,

cov

{
E

(
2kWp−iIp∑k
m=−k Ii+k

|Ip; Iq
)
;

E

(
2kWq−jIq∑k
m=−k Ij+k

|Ip; Iq
)}

= 0:

Similarly if p= q,

cov

{
E

(
2kWp−iIp∑k
m=−k Ii+k

|Ip
)
; E

(
2kWq−jIq∑k
m=−k Ij+k

|Ip
)}

6
1
xixj

Wp−iWp−jf2
p:

From here we conclude

1
n2

n∑
i=1

n∑
j=1

∑
p∈Ki; j; k

∑
q∈Ki; j; k

cov

{
E

(
2kWp−iIp∑k
m=−k Ii+k

|Ip
)
;

E

(
2kWp−jIp∑k
m=−k Ij+k

|Ip
)}

6
1
n2

∑
p∈Ki; j; k

n∑
i=1

n∑
j=1

maxj(fj)2

minj(fj)2 Wp−iWp−j

6
3 maxj(fj)2

nminj(fj)2 : (B.13)

Combining (B.5) to (B.8), and (B.10) to (B.13) we
obtain (5).

Appendix C. Proof of Theorem 2

We will Brst show that under our assumptions

E{�KL(f̂; f)}¿D1h4
n +

D2

nh
eventually: (C.1)

We need two inequalities to prove (C.1). DeBne
l(y) = (y − 1) − log(y) and hence �KL(f̂; f)=
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n−1∑n
j=0 l(f̂j=fj). By applying the Taylor approxi-

mation l(y) ≈ 1
2 (y − 1)2 to l(f̂j=fj) (as in Appendix

A) and using the assumption that f is bounded away
from 0 and ∞, we obtain our Brst inequality:

C

(
f̂j − fj
fj

)2

6 l

(
f̂j
fj

)
with

C =
1
2

min(fj)
max(fj)

: (C.2)

We begin deriving the second inequality by calcu-
lating

E(f̂j − fj)2 = var(f̂j) + {E(f̂j) − fj}2: (C.3)

Iff′′(!j) �= 0 then there isD(!j) such that eventually

{E(f̂j) − fj}2 =

{
2n−1∑
m=−n

Wm−jfm − fj

}2

¿D(!j)h4
n (C.4)

and by (B.9)

var(f̂j) =
2n−1∑
m=−n

W 2
m−j var(Im)¿

minj(fj)2C′
4

nh
: (C.5)

Thus by combining (C.2), (C.3), averaged (C.4) and
(C.5) we get (C.1).

Similar calculations as in the proof of (5) show that

var{�KL(f̂; f)} = O
(

1
n

)
: (C.6)

Also recall that since f′ is bounded the relations (4)
and (5) imply

E{�̂h;k − �KL(f̂; f)}2 = O
(

1
n

)
(C.7)

Combining (C.1), (C.6) and (C.7) we see that under
the conditions stated in Theorem 2 n−1=2 = o(h4

n +
(nh)−1). Therefore, we can Bnd rn such that

E{�̂h;k − �KL(f̂; f)}2 = o(r2n);

var{�KL(f̂; f)} = o(r2n) and

rn = o[E{�KL(f̂; f)}]: (C.8)

Fix �¿ 0 and calculate

P

{∣∣∣∣∣ �̂h;k − �KL(f̂; f)

�KL(f̂; f)

∣∣∣∣∣¿�

}

¡P

{∣∣∣∣∣ �̂h;k − �KL(f̂; f)
rn

∣∣∣∣∣¿�

}

+P{�KL(f̂; f)¡rn}:
By (C.8), the Markov’s and Chebyshev’s inequalities
we get

P

{∣∣∣∣∣ �̂h;k − �KL(f̂; f)
rn

∣∣∣∣∣¿�

}

¡
E{�̂h;k − �KL(f̂; f)}2

�2r2n
→ 0;

P{�KL(f̂; f)¡rn}
¡P[|�KL(f̂; f) − E{�KL(f̂; f)}|

¿E{�KL(f̂; f)} − rn]

¡
var{�KL(f̂; f)}

[E{�KL(f̂; f)} − rn]2
→ 0:

This Bnishes the proof of (6).
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