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Abstract

This paper studies nonparametric regression using smoothing splines. It proposes a method that combines
smoothing spline estimates of di#erent smoothness to form a +nal improved estimate. This new method is
straightforward to implement, computationally inexpensive, and gives reliable performances in simulations.
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1. Introduction

This paper considers the problem of nonparametric curve estimation using smoothing splines.
Suppose observed are n pairs of measurements {xi; yi}ni=1 satisfying the model

yi = f(xi) + �i; a¡x1 ¡ · · ·¡xn ¡b; �i ∼ iid N(0; �2);

where f(x) is an unknown function of interest. A cubic smoothing spline estimate f̂� for f is de+ned
as the minimizer of the penalized criterion

1
n

n∑
i=1

{yi − f(xi)}2 + �
∫ b

a
{f′′(x)}2 dx:
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Fig. 1. (a) True regression function with noisy observations; (b) true regression function (solid line) and smoothing spline
estimate (broken line) computed with a small �; (c) similar to (b) but the smoothing spline estimate was computed using
a large �; (d) similar to (b) but the curve estimate was obtained by the proposed method.

In the above, � is a positive constant known as the smoothing parameter. It controls the trade-o#
between the bias and the variance of f̂�. For general references on smoothing splines, see, for
examples, Eubank (1988), Green and Silverman (1994) and Wahba (1990). It is widely known
that � has a crucial e#ect on the quality of f̂�. Popular automatic methods for choosing �
include cross-validation, generalized cross-validation, Mallows’ Cp criterion and the Akaike Infor-
mation Criterion. Descriptions on these methods can be found for examples in Hurvich et al. (1998),
Lee (2003b) and references given therein. In addition, Cantoni and Ronchetti (2001) study the robust
+tting of smoothing splines.

When the unknown function f consists of di#erent spatial structures, it is often diJcult to obtain
a single f̂� that estimates f uniformly well across its entire domain. It is because slow-varying
structures require a relatively larger � to stabilize the variance while fast-changing structures require
a relatively smaller � to reduce the bias. Fig. 1 illustrates this point. A noisy data set, together
with the corresponding f, are displayed in Fig. 1(a). Fig. 1(b) displays a f̂� computed with a
small �. Notice that the curve estimate captures the fast-changing structures in the left portion of
f reasonably well, but undersmooths the remaining slow-varying structures. Fig. 1(c) displays a f̂�
computed with a large �, which demonstrates the opposite e#ects. Thus it is strongly desirable
to develop automatic methods for combining various f̂�’s (obtained from di#erent �’s) together
to form an improved +nal estimate for f. The aim of this paper is to propose such a method.
Fig. 1(d) displays the +nal curve estimate obtained by this method.
The rest of this paper is organized as follows. The proposed method is presented in Section 2.

Section 3 studies the empirical performance of the proposed method via a simulation study, while
conclusions are o#ered in Section 4.
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2. The proposed method

2.1. General idea

We +rst provide a brief description of the proposed method. Suppose at each design point xi a set
of di#erent smoothing spline estimates f̂�1(xi); : : : ; f̂�m(xi) are computed. The proposed method aims
to choose the f̂�(xi) that minimizes the following local risk calculated at xi:

R�(xi) = E{f(xi) − f̂�(xi)}2:
Of course, R�(xi) is an unknown quantity and hence cannot be practically minimized. To overcome
this problem an estimator for R�(xi) is +rst constructed and f̂�(xi) is then chosen as the minimizer of
the resulting estimator. This procedure is repeated for all xi’s and upon completion a +nal combined
estimate for f is obtained.

2.2. Local risk estimation

This subsection presents our method for estimating R�(xi), and we need additional notation to
proceed. Let y= (y1; : : : ; yn)T, f = (f(x1); : : : ; f(xn))T and f̂ � = (f̂�(x1); : : : ; f̂�(xn))T. Further, let S�
be the “hat” matrix that maps y into f̂ � : f̂ � = S�y. One can show that S� = (I + �K)−1, where I is
the identity matrix and K is a matrix depending only on x1; : : : ; xn (see, e.g., Green and Silverman
1994, Chapter 2) Denote the ith element of the vector S�f as (S�f )(xi) and the ith diagonal element
of the square matrix S�ST

� as s�(xi). The trace of a matrix A is denoted as tr(A).
Straightforward calculation gives the following bias-variance decomposition for R�(xi):

R�(xi) = {(S� f )(xi) − f(xi)}2 + �2s�(xi): (1)

We suggest estimating R�(xi) by replacing the unknown quantities f and �2 in (1) with pilot
estimates (see below). Denote the subsequent estimator as R̂�(xi). Then, for each i, f(xi) can be
estimated by the f̂�(xi) that minimizes R̂�(xi).

For the pilot estimate of f , we use a smoothing spline estimate f̂�p where the pilot smoothing
parameter �p is chosen by the AICc method proposed by Hurvich et al. (1998). This AICc method
performed very well in the simulation study conducted by Lee (2003b). For the pilot estimate of
�2, we use

�̂2
�p =

∑n
i=1{yi − f̂�p(xi)}2
tr(1 − S�p)

: (2)

Reasons for using tr(1− S�p) as the normalizing constant in �̂2
�p can be found for example in Green

and Silverman (1994, Section 3.4). By replacing the unknown quantities in Expression (1) for R�(xi)
with these pilots, our estimator for R�(xi) admits the expression

R̂�(xi) = {(S� f̂ �p)(xi) − f̂�p(xi)}2 + �̂2
�ps�(xi); (3)

where (S� f̂ �p)(xi) is the ith element of the vector S� f̂ �p .
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The above idea of local risk estimation has been used by Lee (2003a) in the context of penalized
spline regression with spatially varying penalties.

2.3. Practical implementation

The proposed method can be implemented with the following steps:

(1) For a set of pre-selected smoothing parameters �1 ¡ · · ·¡�m, compute the corresponding set
of smoothing spline estimates: F= {f̂�1 ; : : : ; f̂�m}.

(2) Calculate the following AICC score for each member in F:

AICC(f̂�) = log
∑{yi − f̂�(xi)}2

n
+ 1 +

2{tr(S�) + 1}
n − tr(S�) − 2

:

(3) The f̂� that gives the smallest AICC score is the (global) AICC smoothing spline estimate for
f. Denote this f̂� as f̂�p , and calculate �̂2

�p using (2).

(4) Substitute the pilots f̂�p and �̂2
�p into expression (1) and obtain R̂�(xi).

(5) For each xi obtain the f̂�(xi) from F that minimizes R̂�(xi). This minimizer is the +nal estimate
for f(xi).

In the above the most computationally demanding calculations are in Step 1. Notice that these
calculations are also required for obtaining many traditional (global) smoothing spline estimates (e.g.,
by cross-validation or AICC). Therefore the computational time required for the proposed method
is not much longer than those traditional methods, as the additional calculations required in Steps
3–5 are relatively minor.

3. Simulation study

This section reports the results of a simulation study that was conducted to evaluate the perfor-
mances of the proposed methods together with two other smoothing spline methods existing in the
literature. These two methods are the AICC method mentioned above and the RECP method studied
in Lee (2003b). These two methods gave overall the best performances in the simulation study
conducted by Lee (2003b). Notice that these two methods are global in nature.

The experimental setup adopted here was essentially the same as Lee (2003b). This setup, orig-
inally due to Professor Steve Marron, was designed to study the e#ects of changing the (i) noise
level, (ii) design density, (iii) degree of spatial variation and (iv) noise variance function in an
independent and e#ective fashion. The idea is as follows. Totally four sets of numerical experiments
are to be performed. For each set of experiments, only one of the above four experimental factors
(e.g., noise level) is changed while the remaining three are being kept unchanged. Within each set
of experiments, the factor under consideration is changed six times, and hence there are altogether
24 di#erent con+gurations. In this way the hope is that patterns can be more easily detected. The
number of replications for each of the 24 con+gurations were 200. For completeness, the setup
speci+cation is listed in Table 1.
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Table 1
Speci+cation of the simulation setup

Factor Generic form Particular choices

Noise level yij = f(xi) + �j�i �j = 0:02 + 0:04(j − 1)2; n= 200
Design density yij = f(Xji) + ��i � = 0:1, Xji = F−1

j (Xi), n= 200

Spatial variation yij = fj(xi) + ��i � = 0:2; fj(x) =
√

x(1 − x) sin[ 2�{1+2(9−4j)=5}
x+2(9−4j)=5 ], n= 400

Variance function yij = f(xi) +
√

vj(xi)�i vj(x) = [0:15{1 + 0:4(2j − 7)(x − 0:5)}]2, n= 200

j = 1; : : : ; 6; xi = i−0:5
n ; �i ∼ iid N (0; 1); f(x) = 1:5�( x−0:35

0:15 ) − �( x−0:8
0:04 )

�(u) = 1√
2�

exp(−u2

2 ); Xi ∼ iid Uniform[0; 1]; Fj is the Beta( j+4
5 ; 11−j

5 ) c:d:f :
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Fig. 2. Simulation results correspond to the noise level factor. In each pair of panels the left plot displays the true
regression function together with one typical simulated data set. The right plot displays the boxplots of the loge MSE
values for, from left to right, AICC, RECP and the proposed method. The numbers below the boxplots are the paired
Wilcoxon test rankings.
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Fig. 3. Similar to Fig. 2 but for the design density factor.

For each simulated data set, we used the mean-squared-errors (MSE) to evaluate the quality of
any curve estimate f̂:

MSE =
n∑

i=1

{f(xi) − f̂(xi)}2:

Boxplots of the loge MSE values for the 24 di#erent con+gurations are given in Figs. 2–5.
Paired Wilcoxon tests were also applied to test if the di#erence between the median MSE values

of any two methods is signi+cant or not. The signi+cance level used was 5
3%=1:67%. The methods

were also ranked in the following manner. If the median MSE value of a method is signi+cantly
less than the remaining two, it will be assigned a rank 1. If the median MSE value of a method
is signi+cantly larger than one but less than the remaining one, it will be assigned a rank 2, and
similarly for rank 3. Methods having non-signi+cantly di#erent median values will share the same
averaged rank. The resulting rankings are also given in Figs. 2–5, and the averaged rankings are
tabulated in Table 2.

The overall Wilcoxon test rankings for AICC, RECP and the proposed method are, respectively,
2.29, 2.48 and 1.23. Therefore there seems to be some evidence to support that the proposed method
is superior. In fact, out of the 24 di#erent simulation con+gurations examined, the proposed method
scored rank 1 for 19 con+gurations and shared the best rank for 3 of the 5 remaining con+gurations.
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Fig. 4. Similar to Fig. 2 but for the spatial variation factor.

Table 2
Averaged Wilcoxon test rankings for the three smoothing methods

Noise level Design density Spatial variation Variance function Overall

AICC 2.42 2.25 2.50 2.00 2.29
RECP 2.17 2.75 2.17 2.83 2.48
Proposed 1.42 1.00 1.33 1.17 1.23

4. Conclusion

In this paper a new method for performing smoothing spline regression is proposed. This new
method combines smoothing spline estimates of di#erent smoothness together to produce a +nal
curve estimate. The proposed method is straightforward to implement, computationally inexpensive,
and possesses superior empirical properties.
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Fig. 5. Similar to Fig. 2 but for the variance function factor.
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