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Abstract

An usual assumption underlying the use of wavelet shrinkage is that the regression function
is assumed to be either periodic or symmetric. However, such an assumption is not always
realistic. This paper proposes an effective method for correcting the boundary bias introduced by
the inappropriateness of such periodic or symmetric assumption. The idea is to combine wavelet
shrinkage with local polynomial regression, where the latter regression technique is known to
possess excellent boundary properties. Simulation results from both the univariate and bivariate
settings provide strong evidence that the proposed method is extremely effective in terms of
correcting boundary bias.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Consider the following regression model:

yi:.f(xi)+8i: izl,...,}’l, (1)
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where x; = (i — 1)/n and the ¢;’s are independent and identical N(0, %) random errors.
The unknown function f, mostly smooth, is suspected to have a few discontinuities
or abrupt changes. Under this situation one popular method to estimate f is wavelet
shrinkage; see, for examples, the seminal papers Donoho and Johnstone (1994, 1995).

However, wavelet shrinkage suffers from boundary problems that are caused by the
application of the wavelet transformation to a finite signal. Many approaches have been
proposed to overcome these problems. Perhaps the most popular approach is to impose
some additional constraints, such as periodicity or symmetry, on f. This approach
can be easily implemented, but such additional constraints may not always be realistic,
especially so for two-dimensional data such as images. More recently, Oh et al. (2001)
(see also Lee and Oh, 2003; Naveau and Oh, 2003) propose a simple method called
polynomial wavelet regression (PWR) for handling these boundary problems. The idea
of PWR is to estimate f with the sum of a set of wavelet basis functions, fw, and a
low-order (global) polynomial, fp. That is,

Fow(x) = fo(x) + fw(x), (2)

where _/}pw is the PWR estimate for f. The hope is that, once fp is removed from
the data y;, the remaining signal hidden in y; — fp(x,‘) can be well estimated using
wavelet regression with say periodic boundary assumption. In practice, one needs to
determine the order of the polynomial for fp. Simulation results from Lee and Oh
(2003) suggest the use of BIC (Schwarz, 1978).

The use of PWR for resolving boundary problems works very well if fp is able
to remove the “non-periodicity” in y;. However, due to the global nature of fp, for
those cases when f has complex boundary conditions or has some abrupt changing
objects present near the boundaries, PWR does not work well. The goal of this article
is to proposal a new method which will also work well under these situations. Fig. 1
provides some illustrative examples. The left column displays various curve estimates
for a regression function that can be well estimated using PWR. It can be seen that
both the PWR and the proposed method (to be described in the next section) produce
good estimates, while a classical wavelet regression estimate with periodic assumption
suffers from edge effects. On the other hand, the right column presents a situation that
both the PWR and classical wavelet regression fail at the boundaries, but the proposed
method is still able to procedure good boundary estimates.

The basic idea behind the proposed method is to introduce a local polynomial regres-
sion component to the wavelet shrinkage. Since local polynomial regression produces
excellent boundary handling (Fan, 1992; Hastie and Loader, 1993), it is expected that
the addition of this component to wavelet shrinkage will result in equally well boundary
properties. Results from numerical experiments strongly support this claim. Besides pro-
ducing promising empirical results, other desirable properties of the proposed method
include: it is easy to implement, computationally fast, and can be straightforwardly
extended to higher dimensional settings.

The rest of this article is organized as follows. Section 2 presents the proposed
method. Results from a simulation study are reported in Section 3. In Section 4 the
two-dimensional setting is considered. Conclusion is offered in Section 5.
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Fig. 1. Plots of two test functions (dashed lines) together with different curve estimates (solid lines). First
row: noisy data sets; second row: classical wavelet regression estimates with periodic boundary conditions;
third row: polynomial wavelet regression estimates; fourth row: the proposed hybrid local polynomial wavelet

regression estimates.

2. Hybrid local polynomial wavelet shrinkage

This section presents the proposed method for improving boundary adjustment in
wavelet regression. Driven by the fact that local polynomial regression is extremely
effective in adapting to boundary conditions (e.g., see Fan, 1992; Hastie and Loader,
1993), we propose replacing the global polynomial fit fp in PWR with a local
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polynomial fit pr. We call the new resulting curve estimate fH a hybrid estimate:

fu(x) = fip(x) + fw(x). 3)

Now the expectation is that, the use of local polynomial regression should automatically
provide boundary bias correction when applied with wavelet shrinkage.

To obtain the hybrid estimate fH, we need to estimate the two components: pr(x)
and fw(x). Inspired by the back-fitting algorithm of Hastie and Tibshirani (1990), we
propose the following iterative algorithm for computing pr(x), fw(x) and hence fH

1. Obtain an initial estimate f O for f, and set f&, = f 0,
2. For j=1,..., iterate the following steps:

(a) Apply wavelet shrinkage to y; — f}{; " and obtain f\j)v
(b) Estimate f/, by fitting local polynomial regression to y; — f4.

3. Stop if fH = ffp + ]A”(N converges.

To use the above algorithm, one needs to choose the initial curve estimate f O in
Step 1 and the smoothing parameter for the local polynomial fit fLP in Step 2(b). For
computing fo we use Friedman’s supersmoother (available as supsmu in R or S-Plus),
while for the smoothing parameter for computing fLP, we use cross-validation.

Our numerical experiences suggest that the above algorithm converges very quickly.
Note that the algorithm can be straightforwardly extended to higher dimensional prob-
lems, in which the proportion of “boundary regions” is much higher then one-
dimensional curve fitting problems.

3. Simulation study

This section reports results from a simulation study that was designed to assess the
practical performance of the proposed method. The R-codes used to carry out this simu-
lation are available from the website http://www.stat.ualberta.ca/
~heeseok/hybrid.html

3.1. Experimental setup

In this simulation the following three methods are studied:

1. wr: the classical wavelet shrinkage with periodic boundary correction,

2. pwr: the polynomial wavelet regression developed by Oh et al. (2001) and Lee and
Oh (2003),

3. hwr: the hybrid wavelet shrinkage proposed in Section 2.

Throughout the whole simulation and for all the above three methods, the empirical
Bayes procedure EBayesThresh of Johnstone and Silverman (2003) was used as the
thresholding rule.


http://www.stat.ualberta.ca/~heeseok/hybrid.html
http://www.stat.ualberta.ca/~heeseok/hybrid.html
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Table 1

Formulae of the test functions. All have the same domain x € [0, 1]

Test function Formula

1-1 %[(4x—O.3)+2exp{—16(4x—0.3)2}]

1-2 %[(4x —2.0) + 2exp{—16(4x — 2.0)*}]

1-3 i[(4x —3.5) + 2exp{—16(4x — 3.5)*}]

2-1 1sin(4mx) — & sgn(x — 03) — 5 sgn(0.72 — x)

2-2 % sin(4nx) — % sgn(x — 0.3) — le sgn(0.90 — x)

2-3 % sin(47nx) — % sgn(x —0.3) — ﬁ sgn(0.95 — x)
4x(1 —sinx) x€[0,0.47)U(0.52,1]

> 0.625 X €[0.47,0.52]
4x(1 —sinx) x€[0,0.73) U (0.78,1]

2 0.625 x€[0.73,0.78]

33 4x(1 —sinx) x€[0,0.88) U (0.93,1]

0.625 x €[0.88,0.93]

We considered three test functions. These test functions have been used by previous
authors and their descriptions can be found in, respectively, Fan and Gijbels (1995),
Donoho and Johnstone (1994) and Oh et al. (2001). Each function has some abrupt
changing features such as discontinuities or sharp bumps. For each of these three test
functions, we produced two additional variants by shifting the locations of these abrupt
changing features. Therefore 9 test functions were used in total. They are listed in
Table 1 and displayed in Fig. 2. Note that it is reasonable to assume a periodic bound-
ary condition for Test Function 2, while for Test Functions 1 and 3, some boundary
adjustment is strongly preferred. As mentioned previously, it is not expected that the
addition of a low-order global polynomial term will eliminate boundary bias for those
cases that there are abrupt changing features near the boundaries, such as those in Test
Functions 1-1, 1-3 and 3-3.

Two levels of signal-to-noise ratio (snr) were chosen: snr = 8 and 6, where snr is
defined as snr=|| f||/o. We considered two different sample sizes: n=>512 and 256. For
each combination of test function, snr and n, 100 sets of observations contaminated by
Gaussian noise were simulated. For each simulated data set, the above three methods
were applied to estimate the test function.

The mean-squared error (MSE) was used as the numerical measure for assessing the
quality of an estimate f: MSE(f)=n"'Y" {f(x;)— f(x:)}?. For those experimental
settings with snr = 8 and n = 256, boxplots of the MSEs for all the curve estimates
are given in Fig. 3. Results for the remaining experimental combinations were similar
and hence are omitted.
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Fig. 2. The nine test functions used in the univariate simulation.

To gain an idea of how the three methods perform near the boundaries, we calculated
the following MSE values for observations near the boundaries

1

MSEA(f)=57 > /)= Fe) (A=1.2..[n/2]; xi=ifn),
iceN(A)

where A(4) ={1,...,4,n — A+ 1,...,n}. Fig. 4 displays the averaged values (over
100 replicates) of MSE (/') versus A4 for Test Functions 1-3 and 3-3, with snr=8 and
n=>512.

3.2. Results

From the simulation results, the following empirical observations can be made:

1. When the periodic boundary assumption is satisfied, both hwr and wr gave very
similar results and outperformed pwr (Test Function 2).
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2. When the periodic boundary assumption is not satisfied, both hwr and pwr outper-
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Fig. 3. Boxplots of MSE( f’) from the univariate simulation study, with snr =8 and n = 256.

formed wr (Test Functions 1 and 3).

3. When the periodic boundary assumption is not satisfied and when the abrupt chang-
ing features are located near the boundaries, hwr outperformed pwr. On the other
hand, if the abrupt changing features are far away from the boundaries, both hwr

and pwr gave similar results.

Therefore, the simulation results seem to suggest that hybrid local polynomial wavelet
shrinkage is a very preferable method for handling boundary problems for wavelet

regression.
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Fig. 4. The averaged values of MSE (/) versus A. The solid line is for wr, the broken line is for pwr and
the dotted line is for hwr. (a) Test Function 1-3; (b) Test Function 3-3.

4. Two-dimensional fitting

In higher dimensional problems, such as image denoising, the proportion of bound-
ary observations is much higher than univariate curve estimation problems. Thus the
need for boundary adjustment is even stronger. The above proposed method can be
extended straightforwardly to such higher dimensional settings. This section present
some simulation results obtained from two-dimensional surface fittings.

Displayed in Fig. 5 are the five two-dimensional test functions used in this study.
These five functions were constructed by adding two rectangular blocks to the five test
functions used in Hwang et al. (1994). To be specific, let f(x, y) denote any one of
the five functions of Hwang et al. (1994). Then the corresponding new test function
g(x, y) used in the current simulation is given by

| 1 1 3

3 lf§<x<z,ﬁ<y<ﬁ,

el 33 7

g(x,y): 5 lfﬁ <x<ﬁ,z <y<g,

f(x,y) otherwise.

The observations were generated by adding independent Gaussian noise to each of
the test functions sampled on a square grid of 256 x 256 regularly spaced grid points.
For each test function the number of replicates was 100 and snr was set to 6.

For each of the simulated data sets, two surface estimates were obtained. The first one
was obtained by applying a classical two-dimensional wavelet thresholding estimation
method, with a thresholding value 0.36+/2 log 2562; i.e. the universal thresholding rule
of Donoho and Johnstone (1994) multiplied by 0.3. This multiplier of 0.3 was suggested
by Kovac and Silverman (2000), and ¢ is a robust estimate of the Gaussian noise
standard deviation. The second surface estimate were obtained with the proposed hybrid
method. The same thresholding value was used and the smoothing parameter for the
local linear regression was chosen by cross-validation.
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Fig. 5. Perspective plots of two-dimensional test functions.

Two MSE values were computed for each estimated surface. The first one was
calculated over the whole domain of the test functions, while the second one was
calculated over those observations that were at most 5 sample points away from the

edges of the test functions. The following ratio was then computed for both types of
MSE values:

MSE for classical estimate
MSE for hybrid estimate -

Boxplots of the logarithms of these two types of MSE ratios are given in Fig. 6. From

these plots, one can see that the hybrid method always outperformed the classical
method. The improvement was even more substantial near the boundaries.
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Fig. 6. Boxplots of the log of two MSE ratios. Left: for MSE values calculated over the entire domain of
the test functions; right: for MSE values calculated over the boundary regions of the test functions. In each
panel the five boxplots, from left to right, correspond respectively to the 2D Test Functions 1-5.

5. Conclusions

In this paper a hybrid wavelet shrinkage method is proposed for reducing the bound-
ary bias that is commonly found in wavelet shrinkage. The proposed method is based
on a coupling of classical wavelet shrinkage and local polynomial regression. The
empirical performance of the method was tested on different numerical experiments,
including both the univariate and bivariate settings. Results from these experiments
illustrate the improvement of the hybrid wavelet shrinkage over the classical wavelet
shrinkage methods.
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