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Abstract

The SiZer methodology proposed by Chaudhuri & Marron (1999) is a valu-

able tool for conducting exploratory data analysis. In this article a robust

version of SiZer is developed for the regression setting. This robust SiZer is

capable of producing SiZer maps with different degrees of robustness. By in-

specting such SiZer maps, either as a series of plots or in the form of a movie,

the structures hidden in a data set can be more effectively revealed. It is also

demonstrated that the robust SiZer can be used to help identifying outliers.

Results from both real data and simulated examples will be provided.
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1 Introduction

Since its first introduction in Chaudhuri & Marron (1999, 2000), SiZer has proven to

be a powerful methodology for conducting exploratory data analysis. Given a set of

noisy data, its primary goal is to help the data analyst to distinguish between the

structures that are “really there” and those that are due to sampling noise. This goal

is achieved by the construction of a so–called SiZer map. In short, a SiZer map is a

2D image that summarizes the locations of all the statistically significant slopes where

these slopes are estimated by smoothing the data with different bandwidths. The idea

is that, say if at location x, all estimated slopes (with different bandwidths) to its

left are significantly increasing while all estimated slopes to its right are significantly

decreasing, then it is extremely likely that there is a “true bump” in the data peaked

at x. For various Bayesian versions of SiZer, see Erästö & Holmström (2004) and

Godtliebsen & Oigard (2005).

In this article some major modifications are made to the original SiZer of Chaud-

huri & Marron (1999) for the regression setting. These include the replacement of

the original local linear smoother with a robust M–type smoother and the use of a

new robust estimate for the noise variance. In addition, a different definition for the

so–called effective sample size is proposed. Since there is a cutoff parameter c (defined

in Section 2.1) that one can choose for the M–type smoother, this enables the new

SiZer to produce different SiZer maps with different levels of robustness. With these

modifications, the new SiZer is able to produce improved SiZer maps that are better
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in terms of revealing the structures hidden in the data. In addition, the new SiZer

can also be applied to help identifying outliers.

The new robust SiZer also has the following appealing feature. The data driven

choice of bandwidth for the M-type nonparametric smoothers is not-well known or in-

vestigated in the literature. Moreover, the expensive computation needed for M-type

estimation makes any standard cross-validation type techniques for bandwidth selec-

tion computationally difficult, while virtually nothing is known in the literature about

the properties of such bandwidth selectors in the context of M-type nonparametric

smoothing. Consequently, the multi-scale (or multi-bandwidth) approach of SiZer is

particularly appealing here, as it eliminates the need for a choice of the “optimal”

bandwidth.

To proceed we first present an example for which the SiZer maps produced by

the original and the new SiZers are different. Displayed in the top panel of Figure 1

is a simulated noisy data set generated from the regression function shown in red.

This regression function, modified from the “bumps” function of Donoho & Johnstone

(1994), is an increasing linear trend superimposed with two sharp features located at

x = 0.3 and x = 0.7. Also displayed in blue is a set of estimated regression functions

computed with different bandwidths. The bottom panel displays a non–robust SiZer

map (i.e., with cutoff c = ∞; see Section 2.1) obtained by applying the new SiZer

to this data set. The horizontal axis of the map gives the x–coordinates of the

data, while the vertical axis corresponds to the bandwidths used to compute the blue
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smoothed curves. These bandwidths are displayed on the log scale, with the smallest

bandwidth at the bottom. The color of each pixel in the SiZer map indicates the

result of a hypothesis test for testing the significance of the estimated slope computed

with the bandwidth and at the location indexed by respectively the vertical and

horizontal axes. Altogether there are four colors: blue and red indicate respectively

the estimated slope is significantly increasing and decreasing, purple indicates the

slope is not significant, while grey shows that there is not enough data for conducting

reliable statistical inference.

This SiZer map correctly identifies the two bumps peaked at x = 0.3 and x = 0.7.

However, due to the present of an outlier that was artificially introduced at x = 0.75,

the map also suggests that there is a bump located at x = 0.75 when the data are

examined at a relatively finer scale; i.e., when one uses relatively smaller bandwidths

to smooth the data.

The robust version of the new SiZer is capable of eliminating various spurious

features such as this “false bump”. The top panel of Figure 2 displays the same noisy

data set as in Figure 1, together with a family of robust M–type local fits. The cutoff

parameter used in these M–type fits was c = 1.345. Displayed in the bottom panel

is a robust SiZer map corresponds to these M–type local fits. One can see that the

effect of the outlier was eliminated. In addition, as the top portion of this map is

blue, it also correctly suggests that there is an increasing trend when the data are

examined at a relatively coarser scale.
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The corresponding SiZer map obtained from the original SiZer of Chaudhuri &

Marron (1999) is given in Figure 3. This map was produced from codes provided by

Professor Marron. Notice that it fails to detect the bump at x = 0.7, and misses the

global increasing trend at the coarser scales. An explanation for this failure is given

in Section 3.2

The rest of the article is organized as follows. The proposed SiZer is presented

in Section 2. Section 3 discuss the issue of outlier identification. In Section 4 the

proposed SiZer is applied to a difficult simulated and a real data sets. Conclusions

are offered in Section 5. Technical and computational details are delayed to the

appendix.

2 A Robust Version of SiZer

2.1 Background

We shall follow Chaudhuri & Marron (1999) and consider nonparametric smoothing

using local linear regression. Suppose observed is a set of observations {Xi, Yi}
n
i=1

satisfying

Yi = m(Xi) + ǫi,

where m is the regression function and the ǫi’s are zero mean independent noise with

common variance σ2. The local linear regression estimate for m(x) and m′(x) at
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Figure 1: Top: noisy data (black) generated by the red regression function m(x) =
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, together with a family of local linear fits

(blue). Bottom: corresponding non–robust SiZer map produced by the proposed SiZer

with cutoff c = ∞.

location x are given respectively by m̂h(x) = âh and m̂′
h(x) = b̂h, where

(âh, b̂h) = arg min
a,b

n
∑

i=1

[Yi − {a + b(Xi − x)}]2Kh(x−Xi). (1)

In the above h is the bandwidth, K is the kernel function, and Kh(x) = K(x/h)/h.

A Gaussian kernel is used throughout this article. Expressions for the asymptotic
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Figure 2: Top: same noisy data (black) as in Figure 1, together with a family of

robust local linear fits (blue). Bottom: SiZer map produced by the new robust SiZer

with cutoff c = 1.345.

Figure 3: SiZer map produced by the original SiZer of Chaudhuri & Marron (1999).
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variances for m̂h(x) and m̂′
h(x) can be found, for examples, in Wand & Jones (1995)

and Fan & Gijbels (1996). These expressions are required for the construction of a

conventional SiZer map.

To construct a robust SiZer map, we need robust estimates for m and m′, and

we consider M–type local linear regression (e.g., Fan & Gijbels 1996, Section 5.5).

Let m̂h,c(x) and m̂′
h,c(x) be respectively the M–type robust estimates for m(x) and

m′(x) with bandwidth h and cutoff c (see below). These estimates are defined as

m̂h,c(x) = âh,c and m̂′
h,c(x) = b̂h,c, where now

(âh,c, b̂h,c) = arg min
a,b

n
∑

i=1

ρc

[

Yi − {a+ b(Xi − x)}

σ̂

]

Kh(x−Xi). (2)

Here σ̂ is a robust estimate of σ and ρc(x) is the Huber loss function

ρc(x) =



















x2/2 if |x| ≤ c,

|x|c− c2/2 if |x| > c.

The cutoff c > 0 can be treated as a robustness parameter. Smaller values of c give

more robust fits while larger values of c give less robust fits. In particular if c → ∞

then m̂h,c → m̂h and m̂′
h,c → m̂′

h. A typical choice for c is c = 1.345 (e.g., Huber

1981). For the proposed robust SiZer, c is treated in the same manner as h: a range

of c values will be used. We will discuss the estimation of σ in Section 3.2. The

estimates m̂h,c and m̂′
h,c can be computed quickly using the method described in the

appendix.

Besides the Huber loss function, the ideas presented above generalize straightfor-

wardly to any other choice of loss function for M-estimation, but then the calculations

8



presented in the appendix would need to be modified accordingly. We have chosen

the Huber loss function for several reasons. First it is well-known and its properties

are well studied. Secondly, it can be easily interpreted as an interpolation between

L1 and L2 based inference. Moreover, we expect that, just as the case of choosing a

kernel function in local linear smoothing, any reasonable choice of a loss function will

lead to essentially the same results.

2.2 Asymptotic Variances for M–Type Estimates

To construct a robust SiZer map, we need to test if m̂′
h,c is significant for different

combinations of h and c. Thus estimates for quantities like the variance of m̂′
h,c are

required. This subsection provides convenient expressions for approximating these

quantities. The following notation will be useful: ei:p is a p-dimensional column

vector having 1 in the ith entry and zero elsewhere,

W = diag {Kh(Xi − x)} , and X =









1 . . . 1

X1 − x . . . Xn − x









T

. (3)

In the appendix the following approximation for the asymptotic variance of m̂h,c

is derived:

var{m̂h,c(x)} ≈ σ2eT
1:2(X

TWX)−1(XTW 2X)(XTWX)−1e1:2 r(c). (4)

The corresponding expression for the asymptotic variance of m̂′
h,c(x) is essentially the

same as (4) except that the two e1:2’s are replaced by e2:2. Note that these robust
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Figure 4: Plot of r(c). The horizontal dotted line is y = 1, the asymptote of r(c).

variance expressions (for m̂h,c and m̂′
h,c) only differ from the corresponding non–robust

variance expressions (for m̂h and m̂′
h) by the quantity r(c), which is derived to be

r(c) =
c2 − 2cφ(c) − (c2 − 1){2Φ(c) − 1}

{2Φ(c) − 1}2
, (5)

where φ(c) and Φ(c) are the density and the distribution function of the standard

normal distribution respectively. A plot of r(c) is given in Figure 4. Also notice that

as c → ∞, r(c) → 1 and the robust variance expressions converge to the non–robust

expressions.

Now the practical estimation of var{m̂h,c(x)} and var{m̂′
h,c(x)} can be achieved by

replacing σ2 with a robust estimate σ̂2. We will discuss the choice of σ̂2 in Section 3.2.
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2.3 Multiple Robust Slope Testing

For the construction of a SiZer map, every estimated slope m̂′
h,c(x) is classified into

one of the following four groups: significantly increasing, significantly decreasing, not

significant, and not enough data.

If an estimated slope is classified to the last group of not enough data, it means

that the slope was estimated with too little data points and reliable hypothesis testing

cannot be performed. This last group involves the concept of effective sample size

(ESS). Our ESS definition is different from Chaudhuri & Marron (1999). Define wi(x)

as the weight that the observation (Xi, Yi) contributes to the non–robust local linear

regression estimate m̂h(x) for m at location x. That is, m̂h(x) =
∑n

i=1wi(x)Yi and

∑

wi(x) = 1. Exact expression for wi(x) is given for example by Equation (5.4) of

Wand & Jones (1995). Then our ESS is defined as the number of elements in S, where

S is the smallest subset of [1, . . . , n] such that
∑

i∈S |wi(x)| > 0.90. Loosely, this ESS

gives the smallest number of data points that constitutes 90% of the total weights.

An estimated slope is classified to be not enough data if its ESS is less than or equal

to 5. When comparing with the ESS definition of Chaudhuri & Marron (1999), we

feel that ours is more natural, and agrees with the notion that ESS is the number of

data points from which the estimate draws most of its information.

Now assume that the ESS of a m̂′
h,c(x) is large enough, and let v̂′h,c(x) be an

estimate of var{m̂′
h,c(x)}; i.e., expression (4) with σ2 and e1:2 replaced by σ̂2 and e2:2

respectively. In the proposed robust SiZer the estimated slope m̂′
h,c(x) is declared to
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be significant if |m̂′
h,c(x)/v̂

′
h,c(x)| > CR, where CR is the critical value. Since a large

number of such statistical tests are to be conducted, one needs to perform multiple

testing adjustment. We use the row–wise adjustment method proposed in Hannig &

Marron (2004) to choose CR. The method developed there is based on asymptotic

consideration that are also valid in the present situation.

Let g be the number of pixels in a row in the SiZer map, ∆ be the distance between

neighboring locations at which the statistical tests are to be performed, and α = 0.05

be the overall significance level of the tests. Hannig & Marron (2004) suggest the

following value for CR:

CR = Φ−1

[

(

1 −
α

2

)1/{θ(∆)g}
]

,

where

θ(∆) = 2Φ

[

∆
√

3 log(g)

2h

]

− 1.

In Hannig & Marron (2004) the quantity θ(∆) is defined as the clustering index that

measures the level of dependency between pixels.

To sum up, if the ESS of an estimated slope is less than or equal to 5, the corre-

sponding pixel in the SiZer map will be colored grey. If the ESS is bigger than 5, then

the corresponding pixel will be colored blue if the standardized slope m̂′
h,c(x)/v̂

′
h,c(x)

is bigger than CR, red if it is less than −CR, and purple otherwise.
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3 Outlier Identification

Barnett & Lewis (1978, page 4) define an outlier to be “an observation (or subset of

observations) which appears to be inconsistent with the remainder of that set of data”.

They also state: “It is a matter of subjective judgment on the part of the observer

whether or not he picks out some observation (or set of observations) for scrutiny”.

This agrees with the statement that the identification of outliers sometimes cannot be

done by purely statistical techniques. Often, subjective decisions from experimental

scientists are required. For alternative definitions of outliers, see Davies & Gather

(1993) and references given therein.

The robust SiZer proposed above can be applied to help scientists to identify

outliers. The general idea is as follows. First for all desired combinations of (h, c)

we compute the standardized residuals (defined below). Then, for each pair of (h, c),

apply a conventional outlier test to these standardized residuals to identify potential

outliers. If any particular observation is classified as an outlier for most combinations

of (h, c), then it is very likely that this observation is in fact an outlier. We illustrate

this idea with the following example.

3.1 An Example

In the top panel of Figure 5 is a simulated noisy data set generated from the red

regression function taken from Ruppert, Sheather & Wand (1995). As for Figure 1,

the blue lines represent a family of estimated regression functions. In this data set,
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two outliers were artificially introduced, at x = 0.25 and x = 0.75. The bottom

panel displays the corresponding SiZer map with a cutoff c = ∞; i.e., a non–robust

map. In this map a new fifth color, black, is used to indicate the presence of probable

outliers. For a given bandwidth h, if the result of an outlier test is significant when

the test is applied to the observation (Xi, Yi), then the pixel that is closest to (Xi, h)

in the map will be colored black. The two long vertical black lines at x = 0.25 and

x = 0.75 strongly suggest the presence of outliers at these two locations. To confirm

this observation, four other SiZer maps were constructed using different cutoff values

c. These SiZer maps are displayed in Figure 6. The same two vertical black lines

remain in all these four maps. We have also computed other SiZer maps with other

cutoffs. The results are summarized in a movie format, which can be downloaded

from http://www.stat.colostate.edu/∼tlee/robustsizer.

There are other short black lines appearing in the lower part of these SiZer maps,

which suggest that there is the possibility of other potential outliers. However, due

to their short lengths and the fact that they do not appear in all the maps, these

black lines are most likely caused by sampling noise rather than the presence of real

outliers.

3.2 Variance Estimation and Outlier Testing

This subsection presents our method for estimating σ2, and provides details of the

outlier test used. We start by defining standardized residuals.
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Figure 5: Top: noisy data (black) generated by the red regression function, together

with a family of local linear fits (blue). Bottom: corresponding non–robust SiZer map

with cutoff c = ∞.

In the appendix it is shown that the variance of the residuals Yi − m̂h,c(Xi) can

be well approximated by

var{Yi − m̂h,c(Xi)} ≈ σ2

{

1 − 2wi(Xi) + r(c)
n
∑

j=1

w2
j (Xi)

}

, (6)

where the weights wi were previously defined in Section 2.3. This motivates our

15



lo
g1

0(
h)

c=20.00

0 0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

lo
g1

0(
h)

c=9.28

0 0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

lo
g1

0(
h)

c=4.30

0 0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

lo
g1

0(
h)

c=2.00

0 0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

Figure 6: Four robust SiZer maps obtained with different cutoff parameters. The

actual cutoff parameters used are given at the top of each map.

definition of standardized residuals:

ǫ̂i =
Yi − m̂h,c(Xi)

{

1 − 2wi(Xi) + r(c)
∑n

j=1w
2
j (Xi)

}1/2
.

Throughout the whole article our robust estimate σ̂ for σ is taken as the interquartile

range of these standardized residuals divided by 2Φ−1(0.75). Of course both ǫ̂i and σ̂

are functions of (h, c), but for simplicity we suppress this dependence in their notation.

For any given pair of (h, c), if the ESS of m̂h,c(Xi) is greater than 5, then our
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robust SiZer flags (Xi, Yi) as an outlier if | ǫ̂i

σ̂
| > tq,ν , where tq,ν is the q quantile of the

t-distribution with ν degrees of freedom. Here q is set to q = 2α
n

, where we choose

α = 0.05 and the divisor n is for the Bonferroni multiple testing adjustment. We

define the degrees of freedom ν as the nearest integer to n −
∑n

i=1wi(Xi). In the

robust SiZer map the color black is used to indicate the presence of an outlier.

Following the ideas from Hannig & Marron (2004) we have also investigated other

multiple outlier testing procedures that utilize the dependence structure of the resid-

uals. In particular we have investigated an approximation to the distribution of the

maximum of the residuals based on Rootzén (1983). We found that, due to the rela-

tively high degree of independence amongst the residuals, this adjustment is almost

identical to the Bonferroni adjustment. Figure 7 illustrates this finding. Displayed

are the critical values for outlier testing obtained using both the Bonferroni (blue) and

Rootzen’s (red) multiple testing adjustments, plotted as a function of number of data

points for a relatively small bandwidth. One can see that the two curves are almost

on top of each other, suggesting that there is very little difference between the meth-

ods. Similar plots were also obtained for a wide variety of bandwidths. Therefore, we

decided to use the relatively simpler Bonferonni multiple testing adjustment.

Now we are ready to provide an explanation of why the original SiZer of Chaudhuri

& Marron (1999) failed to detect the bump located at x = 0.7 in the data set shown

in Figure 1. In the original SiZer σ2 is estimated locally, with a normalized “sum

of squared residuals” type estimate. For x around 0.7, such an estimate of σ2 was
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Figure 7: Critical values for outlier testing obtained using both the Bonferroni (blue)

and Rootzen’s (red) multiple testing adjustments, plotted as a function of number of

data points for a given bandwidth.

badly inflated by the outlier at 0.75, which in turn deflated the test statistic. As a

consequence, the hypothesis testing on the slopes was less likely to be significant, and

hence missed the bump. On the other hand, for the proposed robust SiZer, σ2 was

estimated robustly and hence the effect of the outlier was minimized. Thus the bump

at x = 0.7 was detected, even with c = ∞.
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4 Further Examples

4.1 A Simulated Data Set with Multiple Outliers

It has been known that nonparametric curve estimates are most biased at bumps

and valleys in the true regression function. Thus identifying outliers located in such

regions is a challenging task. Another challenging task is the identification of mul-

tiple outliers that are clustered together. The following numerical experiment was

performed to examine the effectiveness of the proposed robust SiZer under these two

difficult situations. A simulated data set (of total 200 observations) was generated

from a sine wave, where five outliers were added to a bump and another five outliers

were introduced to a valley of the wave. This simulated data set is displayed in the

top two panels of Figure 8. Two SiZer maps of this data set are also displayed in

Figure 8, one with c = ∞ (i.e., non-robust) while the other with c = 1.345. When

comparing these two SiZer maps, one can see that the robust map produces less

spurious features, especially around x = 0.63 for small values of h, and it also better

preserves the real features around x = 0.4 and log10 h = −1.5. In addition, the robust

SiZer correctly suggests the presence of the outliers.

4.2 Real Data: the Radar Glint Data Set

The proposed robust SiZer was also applied to the glint data set that was analyzed

for example by Sardy, Tseng & Bruce (2001). This data set, displayed in Figure 9, are
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Figure 8: Top two panels: a simulated data set with multiple outliers. The black line

in the top-left panel is the curve estimate computed with c = ∞ and the bandwidth

denoted by the while line in the SiZer map underneath. The black curve estimate in

the top-right panel was computed with the same bandwidth but with c = 1.345. This

bandwidth is chosen subjectively. Identified outliers are circled in red. The bottom

panels display the corresponding SiZer maps computed with c = ∞ and c = 1.345.

radar glint observations from a target captured at 512 angles. By visual inspection,

one can see that there are some sharp features in the data, together with quite a few

of potential outliers.
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Five SiZer maps obtained with different cutoffs are also displayed in Figure 9. The

outlier color, black, is not used in these maps. From these maps, one can conclude

that there are two jumps in the data, located at around x = 0.64 and x = 0.78. There

are also some fine structures present inside the range (0.0, 0.5). These fine structures

seem to be “real”, as one needs to use a very small cutoff c = 0.3 to eliminate them.

For the purpose of outlier identification, Figure 10 displays a robust SiZer map ob-

tained with c = 1.345 and uses the black outlier color. Also displayed are three curve

estimates computed with three different bandwidths, with potential outliers high-

lighted for further inspection. We have chosen to display the estimates corresponding

to different bandwidths separately rather than overlaying them in order to make the

indication of potential outliers less cluttered. Similar plots with other cutoffs were

also constructed. These results were again summarized in the form of movies, and

can be downloaded in the same webpage previously listed in Section 3.1. Since there

are many potential outliers, these movies provide a very useful visual summary for

identifying them.

5 Conclusion

In this article a robust version of SiZer is proposed. One main feature of this robust

SiZer is the use of M–type local smoothing. By varying the cutoff parameter of

the M–type smoothing, various SiZer maps of various degrees of robustness can be

produced. It is shown that with such a series of SiZer maps, structures hidden in a
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Figure 9: Top-left panel: the glint data set. Remaining panels: five robust SiZer maps

obtained with different cutoff parameters. The actual cutoff parameters used are given

at the top of each map. The outlier color, black, is not used in these maps.

data set can be more effectively revealed. It is also shown that the new robust SiZer

can be applied to help identifying outliers.
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Figure 10: First three panels: the glint data set (blue) with three robust curve estimates

(black) computed with three different bandwidths. Identified outliers are circled in red.

Bottom panel: corresponding robust SiZer map, in which the horizontal white lines

indicate the bandwidths used to compute the robust curve estimates. The top, middle

and bottom white lines correspond respectively to the curve estimates in the first,

second and third panels.
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6 Appendix

This appendix provides details behind our technical calculations and practical compu-

tations. In the subsequent derivations the robust estimates m̂h,c and m̂′
h,c are denoted

respectively as m̂
(0)
h,c and m̂

(1)
h,c.

Derivation of (4): Our estimator of variance is based on the work of Welsh

(1996). First we introduce some notation. The matrices Np and Tp are both of size

(p+1)×(p+1) with the (i, j)th element being
∫

ui+j−2K(u) du and
∫

ui+j−2K(u)2 du

respectively. Since a Gaussian kernel is used these matrices can be calculated explic-

itly; e.g.,

N1 =









1 0

0 1









, and T1 =









1
2
√

π
0

0 1
4
√

π









.

Furthermore denote ψc(x) = ρ′c(x) and define χa(x) = 1 − 2[Φ{(x + d)/a} −

Φ{(x − d)/a}]. Here a is small positive number and d is chosen in such a way that

∫

χa(u) dF (u) = 0, where F (u) is the distribution function of the ǫi/σ. We use these
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functions to define

K =









σ−2
∫

ψc(u)
2 dF (u) σ−1

∫

ψc(u)χa(u) dF (u)

σ−1
∫

ψc(u)χa(u) dF (u)
∫

χa(u)
2 dF (u)









,

and

M =









σ−2
∫

ψ′
c(u) dF (u) σ−1

∫

uψ′
c(u) dF (u)

σ−1
∫

χa(u)
′ dF (u)

∫

uχ′
a(u) dF (u)









.

Under some technical assumptions that are satisfied for our error distribution,

Welsh (1996) shows that for a random design regression

var{m̂
(i)
h,c(x)} ≈ n−1h−2i−1 eT

1:2M
−1KM−1e1:2 g(x)

−1eT
(i+1):2N

−1
1 T1N

−1
1 e(i+1):2, i = 1, 2,

(7)

where g(x) is the density of the distribution of the design points and ei:p is a p-

dimensional column vector of 0 with 1 on the ith position.

The proposed robust SiZer assumes that under the null hypothesis of no outliers

the F (u) is the standard normal distribution function. Thus we calculate that

K =









c2−2cϕ(c)−(c2−1){2Φ(c)−1}
σ2 0

0 1









, M =









2Φ(c)−1
σ2 0

0 4dϕ{d(1+a2)−1/2}
(1+a2)3/2









,

and by simplifying (7) we get, for i = 1, 2,

var{m̂
(i)
h,c(x)} ≈ r(c)σ2

(i!)2eT
(i+1):2N

−1
1 T1N

−1
1 e(i+1):2

nh2i+1g(x)
, (8)

where the form of r(c) is given in (5). It is worth pointing out that we can derive

similar formulas using different choices of F (u), ψ and ξ.
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The formula (8) cannot be directly used as g(x) is usually an unknown. To solve

this problem consider the non-robust local polynomial regression; i.e., c = ∞. The

variance of the non-robust estimator estimator is (e.g., formula (3.6) of Fan & Gijbels

1996)

var{m̂
(i)
h,∞(x)} = σ2eT

(i+1):2(X
TWX)−1(XTW 2X)(XTWX)−1e(i+1):2,

where X and W were defined in (3). Furthermore, Theorem 3.1 of Fan & Gijbels

(1996) states that

var{m̂
(i)
h,∞(x)} ≈ σ2

(i!)2eT
(i+1):2N

−1
1 T1N

−1
1 e(i+1):2

nh2i+1g(x)
. (9)

Notice that (XTWX)−1(XTW 2X)(XTWX)−1 depends only on the design points. Its

asymptotic behavior is therefore not affected by the choice of c. Thus by comparing

(8) and (9) we conclude (4).

Derivation of (6): Using the results, in particular Theorem 5.3, from Welsh

(1989), we have m̂
(0)
h,c(x) −m(x) ≈ b(x), where

b(x) =
σ

∫

ψ′
c(u) dF (u)

eT
1:2(X

TWX)−1(XTW )(ψc(ǫ1/σ), . . . , ψc(ǫn/σ))T .

The variance of the regression residuals is

var{Yi − m̂
(0)
h,c(Xi)} = var(Yi) − 2 cov{Yi, m̂

(0)
h,c(Xi)} + var{m̂

(0)
h,c(Xi)}.

The first term is σ2 and the third term has been calculated before, so we calculate
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the second term

cov{Yi, m̂
(0)
h,c(Xi)} ≈ cov{Yi, b(Xi)}

= σ2e1:2(X
TWX)−1(XTW )ei:n

∫

uψc(u) dF (u)
∫

ψ′
c(u) dF (u)

= σ2e1:2(X
TWX)−1(XTW )ei:n.

(10)

The last calculation follows from the fact that if F (u) is the standard Gaussian distri-

bution function then
∫

uψc(u) dF (u)/
∫

ψ′
c(u) dF (u) = 1. Notice that the final result

in (10) is the same as the covariance cov{Yi, m̂
(0)
h,∞(Xi)} for a non-robust local linear es-

timator. Formula (6) now follows immediately by calculating e1:2(X
TWX)−1(XTW )ei:n =

wi(Xi).

Computational Details: Here we provide details behind the practical imple-

mentation of the robust SiZer. First recall that the construction of a SiZer map for

any given c requires the computation of the robust estimates m̂h,c(x) and m̂′
h,c(x)

in (2) for many different values of h. In our implementation the number of h we used

was 50, equally–spaced in the log scale from d/(2g) to d/2, where g is the number of

pixels in a row in the SiZer map and d = max(X1, . . . , Xn) − min(X1, . . . , Xn) is the

range of the Xi’s. We also used a fast iterative algorithm for computing m̂h,c(x) and

m̂′
h,c(x) for any given pair of h and c. This algorithm is similar to the one proposed

in Lee & Oh (2004), and consists of the following steps:

1. Obtain an initial curve estimate m̂
[0]
h,c for m. This can be the solution to (1).

2. Set Ỹ
[0]
i = Yi for i = 1, . . . , n.
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3. Iterate, until convergence, the following steps for j = 0, 1, . . .:

(a) Obtain a robust estimate σ̂[j+1] of the noise standard deviation using the

residuals Yi − m̂
[j]
h,c(Xi), i = 1, . . . , n. In our implementation we use 1.4826

times the median absolute deviation of these residuals.

(b) For i = 1, . . . , n, compute

Ỹ
[j+1]
i = m̂

[j]
h,c(Xi) +

σ̂[j+1]

2
ψc

(

Ỹ
[j]
i − m̂

[j]
h,c(Xi)

σ̂[j+1]

)

,

where the function ψc is the derivative of ρc.

(c) Calculate the (j + 1)th iterative estimates m̂
[j+1]
h,c (x) and m̂

′[j+1]
h,c (x) as

{

m̂
[j+1]
h,c (x), m̂

′[j+1]
h,c (x)

}

= arg min
a,b

n
∑

i=1

[

Ỹi − {a+ b(Xi − x)}
]2

Kh(x−Xi).

(11)

4. Take the converged estimates m̂
[∞]
h,c and m̂

′[∞]
h,c as our final robust estimates for

m and m′ respectively.

Notice that this algorithm replaces the hard minimization problem in (2) with a

series of quick least-squares type minimizations (11). Also, in practice this algorithm

converges very quickly.
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