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Abstract

Regression problems under Poisson variability arise in many different scientific areas such as,
for examples, astrophysics and medical imaging. This article considers the problem of bandwidth
selection for kernel smoothing of Poisson data. Its first contribution is the proposal of a new bandwidth
selection method that aims to choose the bandwidth that minimizes the Kullback–Leibler (KL) distance
between the estimated and the unknown true regression functions. The idea behind is to first construct
an estimator of the KL distance and then chooses the minimizer of this distance estimator as the
bandwidth. The consistency of this distance estimator is established. As a second contribution, this
article establishes the consistency of an existing estimator that targets the L2 risk between the true
and the estimated regression functions. In a simulation study, when the targeting distance measure
is the KL discrepancy, the proposed KL-based bandwidth selector outperforms a bandwidth selector
that uses deviance cross-validation.
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1. Introduction

This article is concerned with regression function estimation under the following Poisson
setting. Suppose n independent Poisson counts yj are observed at a set of grid points xj :

yj ∼ P(fj ), fj = f (xj ), xj = j

n
, j = 0, . . . , n − 1, (1)

where P(fj ) denotes a Poisson distribution with mean fj . The goal is to estimate the
unknown regression function f, which is assumed to be “smooth”. Practical applications
covered by this setting include the estimation of X-ray or �-ray burst intensity maps in
astrophysics (e.g., Kolaczyk, 1997; van Dyk et al., 2001) and the smoothing of Poisson count
data in medical imaging (e.g., Hudson and Lee, 1998; La Riviere and Pan, 2000). Possible
generalizations to this setting, including non-equally spaced designs, will be discussed in
Section 4.

For simplicity we shall primarily focus on the following kernel-smoothed estimator for f.
Let K be a kernel function. Let also h be a non-negative smoothing parameter, also known
as the bandwidth, that controls the amount of smoothing. Write Kh(·) = 1/hK(·/h). The
kernel estimator f̂j for fj is defined as

f̂j =
∑n−1

m=0 Kh(xm − xj )ym∑n−1
l=0 Kh(xl − xj )

, j = 0, . . . , n − 1. (2)

Note that f̂j is a function of h, but, for brevity, this dependence is suppressed from its
notation. It is well known that the choice of h is much more crucial than the choice of K
(e.g., see Wand and Jones, 1995).

The purpose of this article is to study, both theoretically and empirically, the properties
of two data-dependent methods for choosing h. The first method aims to choose the h that
minimizes the following Kullback–Leibler (KL) discrepancy between f̂ and f

�KL(f̂ , f ) = 1

n

n−1∑
j=0

{fj − f̂j + f̂j (log f̂j − log fj )}. (3)

Derivation for �KL(f̂ , f ) is given in Appendix A. The second method aims for minimizing
the L2 risk between f̂ and f

�R(f̂ , f ) = 1

n

n−1∑
j=0

(fj − f̂j )
2.

Notice that both �KL(f̂ , f ) and �R(f̂ , f ) are unknown, therefore direct minimization of
these two discrepancy measures is not possible. A common approach to overcoming this
problem is first to construct an estimator for the discrepancy measure of interest, and then
choose the bandwidth that minimizes such a discrepancy estimator.As mentioned in Linhart
and Zucchini (1986), the rationale is that the bandwidth that minimizes the discrepancy
estimator should also approximately minimize the unknown discrepancy. Other classical
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statistical model selection criteria that follow this rationale include Mallows’Cp andAkaike
information criterion. This article proposes a consistent estimator for �KL(f̂ , f ), as well
as establishes the consistency of an existing estimator for �R(f̂ , f ). It is worth mentioning
that a technical challenge for estimating �KL(f̂ , f ) occurs when fj is close to zero; i.e.,
when log fj approaches −∞.

The problem of function estimation under Poisson noise has of course been studied by
various authors. Earlier references include Hudson (1978, 1985), who studied the problem
from a L2 perspective. Pawitan and O’Sullivan (1993) develop an L2 risk-based method
for choosing the amount of smoothing in medical image reconstruction. In the context
of generalized linear models, a computational procedure, based on cross-validating (CV)
the deviance, is described in Hastie and Tibshirani (1990, Chapter 6). Xiang and Wahba
(1996) propose a generalized approximate cross-validation (GACV) procedure for choosing
the smoothing parameter for smoothing splines with non-Gaussian data (see also Gu and
Xiang, 2001). Their numerical results suggest that, in the Bernoulli noise case, GACV can
be used to estimate the KL discrepancy. However, no proof has been provided for supporting
this observation. Further results concerning the use of smoothing splines for non-Gaussian
data can be found in Gu (2002, Chapter 5). More recently, a wavelet thresholding method
tailored for Poisson noise is proposed by Kolaczyk (1998). Also, Kolaczyk (1999) and
Nowak and Kolaczyk (2000) provide Bayesian multi-scale methods for handling Poisson
inverse problems.

The rest of this article is organized as follows. The main theoretical contributions of
this article are presented in Section 2. In Section 3, results from numerical experiments
are reported for evaluating the two bandwidth selection methods mentioned above. Gen-
eralizations and conclusions are offered in Section 4. Technical details are deferred to the
appendices.

2. Theoretical results

This section presents the main contributions of this article, namely, the proposal of a
new consistent estimator for �KL(f̂ , f ), and a theoretical study of an earlier estimator for
�R(f̂ , f ). We remark that the kernel estimator f̂j can also be interpreted as a weighted
average of the yj ’s. It is because one could write

f̂j =
∑
m

wm−j ym with wm−j = Kh(xm − xj )∑
l Kh(xl − xj )

. (4)

Notice that the weights wm’s sum to unity. In what follows we will assume that f satisfies
the periodic boundary condition; i.e., fj = fj+n = fj−n for j = 0, . . . , n − 1. This will
allow us to have the weights wm independent of location.

2.1. Estimating the KL discrepancy

One major difficulty behind the construction of an estimator for �KL(f̂ , f ) is the need
for estimating log fj when fj is close to zero. It is because under this situation yj will take
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value 0 with probability close to 1 − fj ≈ 1 and 1 with probability close to fj ≈ 0. This
will in turn give rise to “low count” data. The way that we handle this “low count” situation
is to lump neighboring observations of yj (i.e., yj±k for small k) together so that the sum

of these yj ’s is large enough to be worked with. Thus in our estimator, denoted as �̂
k

KL(h),
there is one integer parameter k that needs to be pre-specified. This parameter k is used to
control the amount of lumping. At the end of this subsection we will discuss the issue of

how to pre-specify k. The details of the construction of our estimator �̂
k

KL(h), together with
additional comments on k, are given in Appendix B. Here we only describe the main idea
behind this construction.

When estimating �KL(f̂ , f ) we need to be able to estimate log fj and fj log fj . If Y has
Poisson(�) distribution the arguments in Appendix B show that

E

{(
log Y − 1

2Y

)
I{Y>0}

}
≈ log �, (5)

E(Y log Y ) − 1
2 ≈ � log �, (6)

where IE is the indicator function for event E. The approximation in (6) is uniformly good
for all �, which suggests estimating � log � with Y log Y − 1

2I{Y>0}. This and the lumping
idea described above lead directly to the definition of �k

j below. The approximation in (5)
needs bias correction for small �. The bias corrected version of the estimator of log � is

then used below for the definition of �k
j . The estimator �̂

k

KL(h) is then derived from (3) by

replacing of log fj by its estimator �k
j and fj log fj by �k

j .

We now can state the exact form of our estimator �̂
k

KL(h). Define

yk
j =

∑
|m|�k

yj+m, f k
j =

∑
|m|�k

fj+m,

�k
j =

{
log

yk
j

2k + 1
+ 0.5

yk
j

− 1.36177

(yk
j )2 + 2.15204

(yk
j )3

}
I{yk

j >0}

− {log(2k + 1) + 2.10898}I{yk
j =0}

and

�k
j = yk

j

2k + 1
log

yk
j

2k + 1
− 1

2(2k + 1)
I{yk

j >0}.

Our estimator admits the following expression:

�̂
k

KL(h) = 1

n

n−1∑
j=0

⎛
⎝yj − f̂j + f̂j log f̂j − �k

j

∑
|m|�k

wmyj+m − �k
j

∑
|m|�k

wm

⎞
⎠ .

If the target discrepancy measure is �KL(f̂ , f ), we propose to choose the bandwidth h as

the minimizer of �̂
k

KL(h).
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We have established the consistency of our estimator. The results are summarized in the
following theorem. The proof is given in Appendix C.

Theorem 1. Suppose that f is Lipschitz with constant D and bounded away from 0 and ∞,
and that the kernel K is compact, symmetrical, unimodal and square-integrable. Then

|E{�̂k

KL(h) − �KL(f̂ , f )}|� C1M1

M2(2k + 1)2 + C2

M2b(2k + 1)
+ C3M1Dk(k + 1)

M2(2k + 1)n

+ C4Dk(k + 1)

nb
{1 + 2 max(− log M2, log M1)}

+ C5D
2k2(1 + k)2

M1(2k + 1)n2b
, (7)

where M1 = max f (x), M2 = min f (x), b is the number of yj ’s in the support of Kh, and
C1, C2, C3, C4, C5 are constants depending only on K. Furthermore,

var{�̂k

KL(h) − �KL(f̂ , f )}�C
b

n
, (8)

where C is a constant depending only on f.
In addition, if k < b < n are simultaneously approaching infinity, b = o{min(n1/3, k2)},

then

�̂
k

KL(h) − �KL(f̂ , f )

�KL(f̂ , f )
→ 0 in probability. (9)

We remark that the quantity b plays a dual role to the bandwidth h. It is because b=�Lnh�
if L is the length of the support of K.

Now we consider the choice of k. Of course its optimal value would depend on different
unknown quantities such as various properties of f. In practice these quantities may not be
available, which makes pre-specifying the optimal value of k difficult. However, from our
numerical experience, setting k = 1 is often a good and conservative choice. We have used
k = 1 through out all our numerical experiments described in Section 3 below.

Remark 1. The established consistency of the estimator �̂
k

KL(h) suggests an important
implication about the asymptotic behavior of our estimator. Denote f̂hKL,0

the estimator

of f calculated using the optimal bandwidth hKL,0 minimizing �KL(f̂ , f ) (not obtainable
in practice) and f̂

ĥKL
the estimator of f calculated using the bandwidth ĥKL minimizing

�̂
k

KL(h) (our estimator). Assume that

�̂
k

KL(h) − �KL(f̂ , f )

�KL(f̂ , f )
→ 0
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for both h = ĥKL and h = hKL,0. This could be achieved for example by strengthening
equation (9) of Theorem 1 to hold uniformly for all h. Then

�̂
k

KL(ĥKL)

�KL(f̂
ĥKL

, f )
→ 1 and

�KL(f̂hKL,0
, f )

�̂
k

KL(hKL,0)
→ 1. (10)

Since f̂hKL,0
minimizes �KL(f̂ , f ) and f̂

ĥKL
minimizes �̂

k

KL(h), we have

�KL(f̂
ĥKL

, f )

�KL(f̂hKL,0
, f )

�1 and
�̂

k

KL(hKL,0)

�̂
k

KL(ĥKL)
�1. (11)

From here and (10) calculate

lim sup
n→∞

�KL(f̂
ĥKL

, f )

�KL(f̂hKL,0
, f )

� lim sup
n→∞

�KL(f̂
ĥKL

, f )

�KL(f̂hKL,0
, f )

· �̂
k

KL(hKL,0)

�̂
k

KL(ĥKL)
= 1. (12)

Combining (11) and (12) we have �KL(f̂
ĥKL

, f )/�KL(f̂hKL,0
, f ) → 1 concluding that

�KL(f̂
ĥKL

, f ) converges to 0 at the same speed as �KL(f̂hKL,0
, f ).

2.2. Estimating the L2 risk

Unbiased estimation of the L2 risk under Poisson variability has been studied by previous
authors; e.g., see Hudson (1978) and Pawitan and O’Sullivan (1993). For the current setting,
the following estimator �̂R(h) for �R(f̂ , f ) can be obtained from results in Pawitan and
O’Sullivan (1993):

�̂R(h) = 1

n

∑
j

{(yj − f̂j )
2 + (2w0 − 1)yj }.

One could choose h as the minimizer of �̂R(h) if �R(f̂ , f ) is the target discrepancy measure.
We have also studied the theoretical properties of �̂R(h) in a similar fashion as for

�̂
k

KL(h). Our results are summarized in the theorem below. In short, our contribution in this
subsection is that we have established the consistency of �̂R(h). Proof of the theorem is
delayed to Appendix D.

Theorem 2. Suppose that f is Lipschitz and bounded, and that K is compact, symmetrical,
unimodal and square-integrable. Then

E{�̂R(h) − �R(f̂ , f )} = 0 (13)
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and

var{�̂R(h) − �R(f̂ , f )}�C
b

n
, (14)

where C is a constant depending only on f.
In addition, if b = o(n1/3)

�̂R(h) − �R(f̂ , f )

�R(f̂ , f )
→ 0 in probability. (15)

2.3. Computational issues

Both of the above two bandwidth selection procedures are computationally inexpensive

and straightforward to implement. It is because both �̂
k

KL(h) and �̂R(h) can be directly
computed without using any Monte Carlo-type approximations. Also, since the data are
assumed to be regularly spaced, fast computation of f̂j can be achieved by using Fourier
techniques.

3. Numerical results

A small-scale simulation study was conducted to evaluate the empirical properties of
the two bandwidth selection methods discussed above. For comparative purposes, the CV
deviance procedure described in Hastie and Tibshirani (1990, Chapter 6) was also studied.
This procedure chooses the bandwidth h that minimizes the following leave-one-out CV
deviance function

CVDev(h) = 1

n

n−1∑
j=0

{f̂−j − yj + yj (log yj − log f̂−j )},

where f̂−j is the estimate of fj obtained from using all but the ith observation yi . Notice
that CVDev(h) is targeting the KL discrepancy.

3.1. Setup

In this study three test functions, three signal-to-noise ratios (snrs) and four sample sizes
were used. The three test functions were

Test Function 1: f (x) = max{sin(4�x), �}, � = 0.000005,
Test Function 2: f (x) = max{sin(4�x) + 1, �},
Test Function 3: f (x) = 2 sin(4�x) + 3.
These three test functions are derived from a standard sine wave and present three different
levels of difficulties. For Test Function 1 half of its domain “touches zero” (i.e., has “y-
value” that are virtually zero), for Test Function 2 the valleys of the sine wave “touch zero”,
while for Test Function 3 the whole sine wave is shifted up so that it is sufficiently far away
from zero. As indicated above a major difficulty for estimating �KL(f̂ , f ) is the estimation
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Fig. 1. Visual inspection for Test Function 1 with n = 200. Top-left: true function (solid line) with noisy data
points superimposed. Top-right: true function (solid line) with estimated function using h = ĥKL (broken line).
Bottom-left: true function (solid line) with estimated function using h = ĥR (broken line). Bottom-right: true
function (solid line) with estimated function using h = ĥDEV (broken line).

of log f (x) when f (x) ≈ 0. Thus one may treat that Test Function 1 is a hard example,
Test Function 2 is a medium example while Test Function 3 is an easy example. Plots of
the test functions can be found in Figs. 1–6.

We define snr as ‖f ‖/√var(f ) =
√∑

f 2
j /
∑

fj , where var(f ) can be interpreted as

the variance of the noise. To change the snr of a test function f, a constant c is multiplied

to it so that
√∑

(cf j )
2/
∑

cf j reaches the pre-specified value. The three snrs used were
2, 4, and 6. The four sample sizes were n = 200, 400, 800 and 1600. The kernel function
used was K(x) = 3

4 (1 − x2), x ∈ [0, 1]. It is the optimal kernel of order (0, 2) derived in
Gasser et al. (1985). Throughout the whole study we set k = 1.

For each of the above 36 experimental settings, 250 independent data sets were simulated.
For each of these simulated data sets, the bandwidths ĥKL, ĥR and ĥDEV that minimize,

respectively, �̂
k

KL(h)|k=1, �̂R(h) and CVDev(h)were computed. In addition, two practically
unobtainable optimal bandwidths were also computed. They were hKL,0, the bandwidth that
minimizes �KL(f̂ , f ), and hR,0, the bandwidth that minimizes �R(f̂ , f ).
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Fig. 2. Similar to Fig. 1 but for Test Function 1 with n = 800.

3.2. Results

Four numerical measures were adopted to evaluate the quality of ĥKL. Let f̂[h] be the
estimate of f computed using the bandwidth h. The four numerical measures were

�KL(f̂[ĥKL], f ), �R(f̂[ĥKL], f ),
�KL(f̂[ĥKL], f )

�KL(f̂[hKL,0], f )
and

�R(f̂[ĥKL], f )

�R(f̂[hR,0], f )
.

The first and the third measures were used to assess the performance of ĥKL when �KL(f̂ , f )

is of interest: the first assesses the quality in an absolute sense while the third assesses the
quality relative to the best possible bandwidth hKL,0 that one could get only if f is known.
Although ĥKL is not targeting the L2 risk �̂R(h), it would still be interesting and worthwhile
to include the second and the fourth measures. Averages and standard deviations for these
four measures, computed from the 250 repetitions for each experiment setting, are given in
Tables 1–4. Similar values for evaluating the quality of ĥR and ĥDEV were also computed
and are reported in the same tables.

The following empirical conclusions can be drawn from examining these tables. First,
for all experimental settings, the values of �KL(f̂ , f ) and �R(f̂ , f ) decrease as n increases
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Fig. 3. Similar to Fig. 1 but for Test Function 2 with n = 200.

(see Tables 1 and 2). Secondly, for the “easy” Test Function 3, all three bandwidth selectors
ĥKL, ĥR and ĥDEV gave very similar performances regardless of which numerical measure
is being used. Thirdly, for Test Functions 1 and 2, ĥKL seems to outperform ĥDEV when
the targeting distance measure is the KL discrepancy. Lastly, as most of the corresponding
entries in Table 3 are close to 1, the proposed ĥKL gave very good results when comparing
to the best possible (but practically unobtainable) hKL,0.

To visually evaluate the quality of various estimated curves, the following was done. For
Test Function 1 with snr = 4 and n = 200, the simulated data set that corresponds to the
125th sorted value of �KL(f̂[ĥKL], f ) is plotted in Fig. 1, together with the estimated curves

computed using the corresponding ĥKL, ĥR and ĥDEV. Similar plots were also produced
for n = 800 and also for Test Functions 2 and 3; they are displayed in Figs. 2–6.

4. Concluding remarks

In this article the problem of bandwidth selection for kernel regression with Poisson
data is considered. A new bandwidth selection procedure that targets the KL discrepancy
is proposed and both analytically and empirically studied. In addition, an existing L2 risk-
based bandwidth selection procedure is also studied. In a simulation study the proposed
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Fig. 4. Similar to Fig. 1 but for Test Function 2 with n = 800.

bandwidth selection procedure out-performed a deviance cross-validation-based procedure
if the KL discrepancy is the target distance measure.

Several important extensions of this work are worth considering. The first one comes
when the design points are non-equally spaced. One can construct an estimator for the KL
discrepancy as before, but use nearest neighbors when calculating yk

j . This approach works
well if the design points x are dense enough. For example if maxj (xj − xj−1) → 0 then
the theorems of this article can be straightforwardly modified to show that the resulting
estimator is consistent.

Another direct extension is to apply the above methodology to the class of linear non-
parametric smoothing estimators that produce estimates f̂ of the form f̂ = Hy, where y =
(y0, . . . , yn−1)

T and H is known as the “hat” or the “smoother” matrix. The kernel estimator
considered in this article is a member of this class. Other class members include smoothing
splines and penalized regression splines.

Extension to two-dimensional regularly spaced data setting (e.g., image data) is straight-
forward. Another possible extension of this work we are currently investigating is to con-
struct similar KL discrepancy estimators for the use in generalized linear and additive
models.
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Table 1
Averages and standard deviations (in parentheses) of �KL(f̂[h], f ) for h = ĥKL (minimizer of �̂

k

KL(h)), h = ĥR

(minimizer of �̂R(h)) and h = ĥDEV (minimizer of CVDev(h))

Test Bandwidth Sample size
Function selection n = 200 n = 400 n = 800 n = 1600

1 ĥKL 0.284 (0.005) 0.150 (0.002) 0.088 (0.001) 0.051 (0.001)
ĥR 0.927 (0.021) 0.598 (0.014) 0.404 (0.010) 0.277 (0.006)
ĥDEV 0.333 (0.008) 0.181 (0.004) 0.104 (0.002) 0.060 (0.001)

2 ĥKL 0.081 (0.001) 0.043 (0.001) 0.025 (0.001) 0.015 (0.001)
ĥR 0.153 (0.004) 0.090 (0.002) 0.056 (0.001) 0.034 (0.001)
ĥDEV 0.087 (0.002) 0.047 (0.001) 0.026 (0.001) 0.015 (0.001)

3 ĥKL 0.037 (0.001) 0.020 (0.001) 0.012 (0.001) 0.007 (0.001)
ĥR 0.037 (0.001) 0.020 (0.001) 0.012 (0.001) 0.007 (0.001)
ĥDEV 0.037 (0.001) 0.020 (0.001) 0.012 (0.001) 0.006 (0.001)

Table 2
Similar to Table 1 but for �R(f, f̂[h])

Test Bandwidth Sample size
Function selection n = 200 n = 400 n = 800 n = 1600

1 ĥKL 1.175 (0.027) 0.754 (0.015) 0.486 (0.009) 0.321 (0.006)
ĥR 0.814 (0.022) 0.465 (0.011) 0.270 (0.006) 0.165 (0.004)
ĥDEV 1.164 (0.034) 0.708 (0.018) 0.444 (0.009) 0.292 (0.006)

2 ĥKL 1.066 (0.027) 0.588 (0.014) 0.345 (0.008) 0.204 (0.004)
ĥR 0.876 (0.027) 0.428 (0.011) 0.253 (0.006) 0.147 (0.003)
ĥDEV 0.991 (0.027) 0.524 (0.012) 0.317 (0.007) 0.194 (0.004)

3 ĥKL 0.892 (0.026) 0.499 (0.013) 0.297 (0.008) 0.164 (0.004)
ĥR 0.889 (0.026) 0.495 (0.014) 0.284 (0.007) 0.158 (0.004)
ĥDEV 0.905 (0.026) 0.490 (0.013) 0.290 (0.007) 0.16 (0.004)

Table 3
Similar to Table 1 but for �KL(f̂[h], f )/�KL(f̂[hKL,0], f )

Test Bandwidth Sample size
Function selection n = 200 n = 400 n = 800 n = 1600

1 ĥKL 1.835 (0.031) 1.641 (0.023) 1.584 (0.021) 1.541 (0.023)
ĥR 6.299 (0.196) 6.827 (0.198) 7.584 (0.217) 8.539 (0.223)
ĥDEV 2.147 (0.051) 2.001 (0.044) 1.874 (0.034) 1.821 (0.036)

2 ĥKL 1.118 (0.009) 1.096 (0.008) 1.096 (0.008) 1.085 (0.008)
ĥR 2.260 (0.067) 2.399 (0.063) 2.540 (0.066) 2.614 (0.071)
ĥDEV 1.213 (0.017) 1.180 (0.013) 1.136 (0.010) 1.112 (0.008)

3 ĥKL 1.159 (0.018) 1.155 (0.017) 1.162 (0.017) 1.121 (0.013)
ĥR 1.169 (0.018) 1.170 (0.019) 1.136 (0.014) 1.116 (0.009)
ĥDEV 1.187 (0.022) 1.145 (0.017) 1.142 (0.015) 1.100 (0.010)
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Fig. 5. Similar to Fig. 1 but for Test Function 3 with n = 200.

Table 4
Similar to Table 1 but for �R(f, f̂[h])/�R(f, f̂[hR,0])

Test Bandwidth Sample size
Function selection n = 200 n = 400 n = 800 n = 1600

1 ĥKL 1.759 (0.033) 1.985 (0.043) 2.149 (0.041) 2.269 (0.045)
ĥR 1.206 (0.031) 1.193 (0.029) 1.144 (0.015) 1.117 (0.012)
ĥDEV 1.746 (0.051) 1.863 (0.053) 1.954 (0.043) 2.053 (0.042)

2 ĥKL 1.597 (0.041) 1.698 (0.037) 1.602 (0.032) 1.585 (0.028)
ĥR 1.249 (0.032) 1.182 (0.021) 1.137 (0.017) 1.113 (0.014)
ĥDEV 1.458 (0.036) 1.497 (0.030) 1.471 (0.027) 1.507 (0.025)

3 ĥKL 1.198 (0.022) 1.197 (0.021) 1.204 (0.020) 1.157 (0.016)
ĥR 1.190 (0.021) 1.184 (0.021) 1.147 (0.017) 1.111 (0.012)
ĥDEV 1.232 (0.028) 1.170 (0.019) 1.174 (0.019) 1.120 (0.012)
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Fig. 6. Similar to Fig. 1 but for Test Function 3 with n = 800.

Appendix A. Derivation of �KL(f̂ , f )

The KL discrepancy for measuring the distance between two discrete probability density
functions (pdfs) g1(t) and g2(t) is defined as

d(g1, g2) =
∑

t

g1(t) log
g1(t)

g2(t)

(e.g., see Burnham and Anderson, 1998). Note that d(g1, g2) �= d(g2, g1). For the current
problem, in order to use d(g1, g2) for comparing a true f and an estimate f̂ , one needs to
compare them design point by design point. At design point xj , the pdf gf (t) corresponding
to f is Poisson with mean fj . That is, gf (t) = e−fj f t

j /t !, t = 0, 1, . . .. For f̂ , a natural

candidate for the corresponding pdf is Poisson with mean f̂j . Denote this pdf as g
f̂
(t), and

thus g
f̂
(t) = e−f̂j f̂ t

j /t !, t = 0, 1, . . .. We choose to measure the distance between f and f̂
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at xj with

d(g
f̂
, gf ) =

∞∑
t=0

g
f̂
(t) log

g
f̂
(t)

gf (t)
=

∞∑
t=0

e−f̂j f̂ t
j

t ! log
e−f̂j f̂ t

j /t !
e−fj f t

j /t !
= fj − f̂j + f̂j (log f̂j − log fj ).

Upon summing over j we obtain �KL(f̂ , f ).
Notice that one could also use �KL(f, f̂ ) (i.e., use d(gf , g

f̂
)) instead of �KL(f̂ , f ) (i.e.,

use d(g
f̂
, gf )), but we choose �KL(f̂ , f ) for the following reason. Using the Taylor series

approximation 1 − y + y log y = (y − 1)2/2 for y ≈ 1, we obtain

�KL(f̂ , f ) ≈ 1

2n

n−1∑
j=0

(fj − f̂j )
2

fj

and

�KL(f, f̂ ) = 1

n

n−1∑
j=0

{f̂j − fj + fj (log fj − log f̂j )} ≈ 1

2n

n−1∑
j=0

(fj − f̂j )
2

f̂j

.

Our belief is that �KL(f̂ , f ) is a better measure to use, as in the above approximation it
uses a fixed quantity, the denominator term fj , to adjust for the variance of (fj − f̂j )

2 while
�KL(f, f̂ ) uses a random quantity f̂j . In addition, for the following reason �KL(f̂ , f ) is
more desirable in the case when fj ≈ 0 for several consecutive j’s. In this case it is quite
possible that f̂j =0 for some small values of bandwidth h, which causes �KL(gfj

, g
f̂j

)=∞
while �KL(g

f̂j
, gfj

)=fj , and of course the latter is more reasonable. Thus in order to get a

finite �KL(gfj
, g

f̂j
) and hence finite �KL(f, f̂ ) the bandwidth will have to be large enough

to guarantee f̂j > 0.This may possibly lead to oversmoothing in other parts of f. On the
other hand �KL(f̂ , f ) does not suffer from this issue.

Appendix B. Construction of �̂
k

KL(h)

This appendix outlines the construction of �̂h,k . The goal is to find an unbiased estimator
of �KL(f̂ , f ), which breaks down to the estimation of fj and f̂j log fj . Estimation of fj

is straightforward as E(yj ) = fj . As shown below, the estimation of f̂j log fj can be
further broken down to the estimation of log fj and fj log fj . However, this poses a bigger
challenge as log fj ≈ −∞ whenever fj ≈ 0. We first work on log fj .

Here and in what follows let Y denote a Poisson(�) random variable. Consider estimating
log � (i.e., log fj ). The Taylor’s series expansion of log y at the point � is
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log y ≈ log � + (y − �)/� − (y − �)2/(2�2), which leads to

E{(log Y )I{Y>0}} ≈ log � − 1

2�
. (16)

This suggests estimating log � by

{log Y − 1/(2Y )}I{Y>0}, (17)

where the factor of 1/(2Y ) is motivated by the fact that E{(2Y )−1I{Y>0}} ≈ 1/(2�). The
approximation in (16) works very well for large �. However, the bias is not satisfactory for
� < 10. To correct this we suggest the following correction. Take an estimator

G = C0I{Y=0} +
{

log Y − 1

2Y
+ C1

Y 2 + C2

Y 3

}
I{Y>0} (18)

and choose C0, C1 and C2 to minimize
∫∞

1 {E(G) − log �}2 d�, where E(G) is considered
as a function of �. The motivation of this step is that the effect of the added terms is negligible
for large values of �. More precisely it is of the order O(1/�2).At the same time the choice of
C0, C1 and C2 will guarantee improvement of the bias for small values of �. We performed
numerical integration and obtain C0 = 2.10898, C1 = 1.36177 and C2 = 2.15204. These
constants improved the bias remarkably for � > 1.

Recall that a major difficulty with estimating log fj occurs when fj is close to zero. To
overcome this difficulty, we make use of the fact that if f is locally smooth, then fj−k ≈
· · · ≈ fj+k for small k. This implies that yj−k, . . . , yj+k are approximately independent
and identically distributed as Poisson with mean fj . Therefore yk

j = ∑k
m=−k yj+m has

approximately Poisson distribution with mean � = (2k + 1)fj . Now if k is large enough so
that � > 1, we have

E(G) ≈ log fj + log(2k + 1). (19)

Thus combining (18) and (19) we derive the estimator of log fj as

�k
j =

{
log

yk
j

2k + 1
+ 1

2yk
j

− 1.36177

(yk
j )2 + 2.15204

(yk
j )3

}
I{yk

j >0}

− {log(2k + 1) + 2.10898}I{yk
j =0}.

Now we consider estimating� log � (orfj log fj ). The Taylor’s series expansion ofy log y

at the point � is y log y ≈ � log � + (y − �) (1 + log �) + (y − �)2/(2�), which gives

E(Y log Y ) ≈ � log � + 1
2 . (20)

Similarly as before we plug yk
j into (20) and obtain

yk
j log yk

j − 1
2I{yk

j >0} ≈ (2k + 1){fj log fj − fj log(2k + 1)},
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which leads to

�k
j = yk

j

2k + 1
log

yk
j

2k + 1
− 1

2(2k + 1)
I{yk

j >0}

as the estimator of fj log fj based on yk
j .

To finish the derivation we decompose f̂j log fj into two parts:

f̂j log fj =
k∑

m=−k

wmyj+m log fj +
(

f̂j −
k∑

m=−k

wmyj+m

)
log fj .

Since the expectation of the first part is approximately fj log fj

∑k
m=−k wm, we estimate it

by �k
j

∑k
m=−k wm. Notice also that the first term of the second part and yk

j are independent.

Thus an approximately unbiased estimator of the second part is (f̂j −∑k
m=−k wmyj+m)�k

j .
The parameter k, in a way, can be treated as a device for controlling the bias and variance
of our estimator for f̂j log fj .

Finally, putting the two parts together we have

f̂j log fj ≈ �k
j

k∑
m=−k

wm +
(

f̂j −
k∑

m=−k

wmyj+m

)
�k
j .

This finishes the construction of �̂
k

KL(h), which is an approximately unbiased estimator of
�KL(f̂ , f ).

Appendix C. Proof of Theorem 1

We first state and prove the following lemma. LetY denote a Poisson(�) random variable,
and define residuals

r1(�) = E

[{
log Y + 0.5

Y
− 1.36177

Y 2 + 2.15204

Y 3

}
I{Y>0} − 2.10898I{Y=0}

]
− log �,

r2(�) = E(Y log Y − 1
2I{Y>0}) − � log �.

Lemma C.1. The following relations are true:

E(�k
j ) = log

f k
j

2k + 1
+ r1(f

k
j ), (21)

E(�k
j ) = f k

j

2k + 1
log

f k
j

2k + 1
+ r2(f

k
j )

2k + 1
. (22)
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Furthermore, as � → ∞:

r1(�) = O(1/�2), (23)

r2(�) = O(1/�). (24)

Proofs of (21) and (22). Notice that yk
j has a Poisson(f k

j ) distribution and direct calcula-
tion shows

E

(
�k

j − f k
j

2k + 1
log

f k
j

2k + 1

)
= 1

2k + 1
E

(
yk
j log yk

j − f k
j log f k

j − 1

2
I{yk

j >0}
)

Relation (22) follows immediately. Similarly one obtains

E

(
�k
j − log

f k
j

2k + 1

)

= E

[{
log yk

j + 0.5

yk
j

− 1.36177

(yk
j )2 + 2.15204

(yk
j )3

}
I{Y>0} − 2.10898I{Y=0}

]

− log(f k
j ),

which implies (21). �

Proof of (24). We first derive an upper bound for r2(�). Using log y = log �+ log{1+ (y −
�)/�} and log(1 + y)�y − y2/2 + y3/3 we get

E(Y log Y ) = E(Y log �) + E

{
Y log

(
1 + Y − �

�

)}

�� log � + E

[
Y

{
Y − �

�
− 1

2

(
Y − �

�

)2

+ 1

3

(
Y − �

�

)3
}]

= � log � + 1

2
+ 5

6�
+ 1

3�2 ,

whence

r2(�)� 5

6�
+ 1

3�2 + 1

2
e−�.

Now we establish a lower bound for r2(�), and we need two inequalities to proceed. The first
inequality is, if C > 0 then log(1+y)�y −y2/2+y3/3− (1+C)y4/4 for y >−D, where
D > 0 depends on C. The second inequality is a classical large deviation result, namely,
P [(Y − �)/�� − D]�e−K�, where K depends on D (e.g., see Grimmett and Stirzaker,
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2001, p. 202). With these two inequalities, we proceed as

E(Y log Y ) = E(Y log �) + E

{
Y log

(
1 + Y − �

�

)
I{Y>�−D�}

}

− E

{
Y log

(
1 + Y − �

�

)
I{Y ��−D�}

}

�� log � + E

{
Y log

(
1 + Y − �

�

)
I{Y>�−D�}

}

+ min
0�x ��−D�

{
x log

(
1 + x − �

�

)}
P

(
Y − �

�
� − D

)

�E

[
Y

{
Y − �

�
− 1

2

(
Y − �

�

)2

+1

3

(
Y − �

�

)3

− 1 + C

4

(
Y − �

�

)4
}]

+ � log � − �e−K�−1

= � log � + 1
2 + 1

�

(
1

12
− 3C

4

)
+ O

(
1

�2

)

and Eq. (24) follows. �

Proof of (23). Using similar arguments as above we conclude that

E(log YI {Y>0}) = log � − 1

2�
+ O

(
1

�2

)
.

Analogously we can write x−1 = �−1{1 + (x − �)/�}−1. It is again well-known that 1/(1 +
y)�1 − y and if C > 0 than 1/(1 + y)�1 − y + (1 + c)y2 for y > − D, where D > 0
depends on C. From here

E

(
1

Y
I{Y>0}

)
� 1

�
E

(
1 − Y − �

�

)
I{Y>0} = 1

�
− 2

�
e−�

and

E

(
1

Y
I{Y>0}

)
� 1

�
E

(
1

1 + (Y − �)/�
I{Y>�−D�}

)

+ max
1�x ��−D�

1

x
P (1�Y �� − D�)

� 1

�
+ 1 + C

�2 + e−K�.

Similar considerations show that

E

(
1

Y k

)
= 1

�k
+ O

(
1

�k+1

)
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and Relation (23) follows by simple algebra. This completes proving Lemma C.1 and we
are now ready to give the proof for Theorem 1. �

Proof of (7). To compute the bias consider �̂
k

KL(h) − �KL(f̂ , f ) = n−1∑n−1
j=0 Sj and de-

compose each summand Sj into four parts:

Sj = (yj − fj ) − (�k
j − log fj )

∑
|m|�k

wmyj+m

− (�k
j − fj log fj )

∑
|m|�k

wm +
∑

|m|�k

wm(yj+m − fj ) log fj . (25)

Let us calculate E(Sj ) term by term:

E(yj − fj ) = 0, (26)

E

⎧⎨
⎩(�k

j − log fj )
∑

|m|�k

wmyj+m

⎫⎬
⎭

=
{

r1(f
k
j ) − log

fj

f k
j /(2k + 1)

} ∑
|m|�k

wmfj+m, (27)

E

⎧⎨
⎩(�k

j − fj log fj )
∑

|m|�k

wm

⎫⎬
⎭

=r2(f
k
j )

1

2k+1

∑
|m|�k

wm+
(

f k
j

2k+1
log

f k
j

2k+1
−fj log fj

) ∑
|m|�k

wm, (28)

E

⎧⎨
⎩
∑

|m|�k

wm log fj (yj+m − fj )

⎫⎬
⎭=

∑
|m|�k

wm(fj+m − fj ) log fj . (29)

Recall M1 = max f and M2 = min f . Combining Eqs. (26)–(29), observing the fact∑
|m|�k wm �(2k + 1)w0, and using inequalities

∣∣∣log
y

x

∣∣∣ � |x − y|
y

and |x log x − y log y|� |x − y||1 + log y| + |x − y|2
2y

,
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we get

|E(Sj )|�M1r1(f
k
j ) + w0r2(f

k
j ) + M1

M2

∣∣∣∣∣
f k

j

2k + 1
− fj

∣∣∣∣∣
+
∣∣∣∣∣

f k
j

2k + 1
− fj

∣∣∣∣∣ {1 + max(log M1, − log M2)}(2k + 1)w0

+ 1

2M2

∣∣∣∣∣
f k

j

2k + 1
− fj

∣∣∣∣∣
2

(2k + 1)w0

+ max(log M1, − log M2)w0

∑
|m|�k

|fj+m − fj |.

Observe that f k
j �M2(2k + 1), and w0 �K ′/b, where K ′ is a constant depending only on

the kernel K. Combining these observations with Lemma C.1 and the fact that f is Lipschitz
with constant D one obtains (7). �

Proof of (8). By noting that the wm’s are zero when |m| > bn/2, and that the observations
are independent, we have

var{�̂k

KL(h) − �KL(f̂ , f )} = 1

n2

n−1∑
i=0

n−1∑
i=0

cov(Si, Sj ) = 1

n2

∑
|i−j |�b

cov(Si, Sj )

� 1

n2

∑
|i−j |�b

{var(Si)var(Sj )}1/2. (30)

Therefore we need to prove that var(Si) is bounded. Using Eq. (25) we get

var(Sj )�4 var(yj ) + 4 var

⎧⎨
⎩(�k

j − log fj )
∑

|m|�k

wmyj+m

⎫⎬
⎭

+ 4

⎛
⎝ ∑

|m|�k

wm

⎞
⎠

2

var(�k
j ) + 4(log fj )

2var

⎛
⎝ ∑

|m|�k

wmyj+m

⎞
⎠ . (31)

Notice that the large deviations considerations mentioned before give us that

P(M2 − � < yk
j < M1 + �)�1 − e−ck for M2 > � > 0 and some c > 0.

This combined with the definition of �k
j , �k

j and the fact that yk
j has a Poisson distribution

immediately imply that both var(�k
j ) and var(�k

j ) are bounded by a constant C̃ that depends
on M1 and M2.
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Let us now calculate each part of (31) separately:

var(yj )�M1, (32)

⎛
⎝ ∑

|m|�k

wm

⎞
⎠

2

var(�k
j )�C′

3

(
k

b

)2

, (33)

(log fj )
2var

⎛
⎝ ∑

|m|�k

wmyj+m

⎞
⎠ �C′

4
2k + 1

b2 M1 max(− log M2, log M1)
2. (34)

The only part that requires a little bit more attention is:

var

⎧⎨
⎩(�k

j − log fj )
∑

|m|�k

wmyj+m

⎫⎬
⎭

= E

⎧⎪⎨
⎪⎩
⎛
⎝ ∑

|m|�k

wmyj+m

⎞
⎠

2
⎫⎪⎬
⎪⎭ var(�k

j )

+ var

⎛
⎝ ∑

|m|�k

wmyj+m

⎞
⎠ {E(�k

j − log fj )}2

�
(

M2
1 + M1

∑
k

w2
m

)
C̃ + M1

(∑
k

w2
m

)

×
[

log

{
f k

j /(2k + 1)

fj

}
+ r1(f

k
j )

]2

. (35)

Now by substituting (32)–(35) into (31) one can see that there is a universal constant
C depending on the function f through M1, M2 and the Lipschitz constant D such that
var(Sj )�C. Therefore from (30) we arrive (8). �

Proof of (9). We will need to use the following relations:

E(�̂
k

KL(h) − �KL(f̂ , f ))2 = O

(
bn

n
+ 1

k4

)
, (36)

var �KL(f̂ , f ) = O

(
bn

n

)
, (37)

E{�KL(f̂ , f )}� C

bn

+ o

(
1

bn

)
. (38)
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Recall, bn = o{min(n1/3, k2
n)}. Thus both (bn/n)1/2 = o(1/bn), 1/k2

n = o(1/bn) and there
is rn such that rn = o(1/bn) and bn/n + 1/k4 = o(r2

n). Fix ε > 0 and calculate:

P

(∣∣∣∣∣ �̂
k

KL(h) − �KL(f̂ , f )

�KL(f̂ , f )

∣∣∣∣∣> ε

)
< P

(∣∣∣∣∣ �̂
k

KL(h) − �KL(f̂ , f )

rn

∣∣∣∣∣> ε

)

+ P(�KL(f̂ , f ) < rn).

By combining (36), (38), (37), the Markov’s and Chebyshev’s inequalities we get

P

(∣∣∣∣∣ �̂
k

KL(h) − �KL(f̂ , f )

rn

∣∣∣∣∣> ε

)
<

E(�̂
k

KL(h) − �KL(f̂ , f ))2

ε2r2
n

→ 0,

P (�KL(f̂ , f ) < rn) < P (|�KL(f̂ , f ) − E�KL(f̂ , f )| > E�KL(f̂ , f ) − rn)

<
var �KL(f̂ , f )

(E�KL(f̂ , f ) − rn)
2

→ 0.

This proves (9). The only remaining part is to verify (36), (38) and (37). �

Proof of (36). Recall

E(�̂
k

KL(h) − �KL(f̂ , f ))2 = var E(�̂
k

KL(h) − �KL(f̂ , f ))2

+ (E�̂
k

KL(h) − E�KL(f̂ , f ))2.

Since kn < bn < n the right-hand side of (7) is of the order 1/k2 + k/n. Thus Eqs. (7) and
(8) imply (36). �

Proof of (37). The proof follows along the same steps as proof of (8) and we omit the
details. �

Proof of (38). We need two inequalities to prove (38). Define l(y) = (y − 1) − log(y) and
hence �KL(f̂ , f ) = n−1∑n−1

j=0 fj l(f̂j /fj ). By applying the Taylor approximation l(y) ≈
1
2 (y − 1)2 to l(f̂j /fj ) and using the assumption that f is bounded away from 0 and ∞, we
obtain our first inequality:

C

(
f̂j − fj

)2

fj

�fj l

(
f̂j

fj

)
with C = 1

2

min(fj )

max(fj )
. (39)

To get the second inequality calculate

E(f̂j − fj )
2

fj

= 2fj − 2E(f̂j ) + E(f̂ 2
j ) − f 2

j

fj

. (40)
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Notice that

E(f̂ 2
j ) = {E(f̂j )}2 +

∑
m

w2
mfj+m. (41)

Thus combining (40) and (41) we get

1

n

∑
j

E(f̂j − fj )
2

fj

= 1

n

∑
j

[
fj + E(f̂j )

fj

{E(f̂j ) − fj } +
∑
m

w2
m

fj+m

fj

]
.

Since the weights wm’s are zero when |m| > bn/2 and the function f is Lipschitz, we have

{E(f̂j ) − fj } =
2n−1∑
m=−n

wm−j {E(ym) − fj }�D
bn

n
. (42)

Also notice that

2n−1∑
m=−n

w2
m−j ≈ L

∫
K2(�) d�

bn

, (43)

where L is the length of the support of K. Combining Eqs. (40)–(43) we can conclude that
there is a constant D1 > 0 depending on K such that

1

n

∑
j

E(f̂j − fj )
2

fj

� D1

bn

+ O

{
bn

n

}
.

Eq. (38) then follows from this and our first inequality (39). �

Appendix D. Proof of Theorem 2

Notice that �̂R(h) − �R(f̂ , f ) = n−1∑n−1
j=0 Zj where

Zj = 2yj (fj − f̂j ) + (yj )
2 − (fj )

2 + (2w0 − 1)yj . (44)

Using independence of yj we get

E(Zj ) = 2E{yjw0(fj − yj )} + fj + (2w0 − 1)fj = 0,

proving (13).
Let us now turn our attention to the variance. Notice that wm’s are zero when |m| > bn/2,

whence the independence of observations implies:

var{�̂R(h) − �R(f̂ , f )} = 1

n2

n−1∑
i=0

n−1∑
i=0

cov(Zi, Zj ) = 1

n2

∑
|i−j |�b

cov(Zi, Zj )

� 1

n2

∑
|i−j |�b

{var(Zi)var(Zj )}1/2. (45)
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Therefore we need to prove that var(Zi) is bounded. Using Eq. (44) we get

var(Zj )�3 var{2yj (fj − f̂j )} + 3 var{(yj )
2} + 3 var{(2w0 − 1)yj }.

Since the function f is bounded and if Y has Poisson(�) distribution then E(Y 4) = � +
7 �2 +6 �3 +�4 we conclude that there is a universal constant C depending on the function f
through max f , such that var(Zj )�C. This and the fact that (45) has no more than (2b+1)n

non-zero terms implies

var{�̂R(h) − �R(f̂ , f )}�C
b

n

which is (14).
Finally, we will prove (15). Notice first that arguments almost identical to those in the

proof of (14) imply

var �R(f̂ , f )�C′ b
n
. (46)

Second, we will estimate E�R(f̂ , f ). Substituting

E(f̂ 2
j ) = {E(f̂j )}2 +

∑
m

w2
mfj+m (47)

into

E{(f̂j − fj )
2} = (fj )

2 − 2fjE(f̂j ) + E(f̂ 2
j ) (48)

we get

1

n

∑
j

E(f̂j − fj )
2 = 1

n

∑
j

[
{fj − E(f̂j )}2 +

∑
m

w2
mfj+m

]
.

The assumption that function f is Lipschitz assures that |fm − fj | < D|m− j |/n. Since the
weights wm’s are zero when |m| > bn/2, we have

{E(f̂j ) − fj }2 =
{

2n−1∑
m=−n

wm−j (fm − fj )

}2

�
(

D
bn

n

)2

. (49)

Combining Eqs. (43) and (48) we can conclude that there is a constant D2 > 0 depending
on K and M, such that

1

n

∑
j

E{(f̂j − fj )
2}� D2

bn

+ O

[{
bn

n

}2
]

. (50)
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Recall, bn = o(n1/3). Thus (bn/n)1/2 = o(1/bn) and there is rn such that rn = o(1/bn)

and (bn/n)1/2 = o(rn). Fix ε > 0 and calculate:

P

(∣∣∣∣∣ �̂R(h) − �R(f̂ , f )

�R(f̂ , f )

∣∣∣∣∣> ε

)
< P

(∣∣∣∣∣ �̂R(h) − �R(f̂ , f )

rn

∣∣∣∣∣> ε

)

+ P(�R(f̂ , f ) < rn).

By combining (13), (14), (46), (50), and the Chebyshev’s inequality we get

P

(∣∣∣∣∣ �̂R(h) − �R(f̂ , f )

rn

∣∣∣∣∣> ε

)
<

var �̂R(h) − �R(f̂ , f )

ε2r2
n

<
Cbn/n

ε2r2
n

→ 0,

P (�R(f̂ , f ) < rn) < P (|�R(f̂ , f ) − E�R(f̂ , f )| > E�R(f̂ , f ) − rn)

<
var �R(f̂ , f )

(E�R(f̂ , f ) − rn)
2

<
C′bn/n

(D2/bn − D(bn/n)2 − rn)
2 → 0.

This proves (15). �
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Gasser, T., Műller, H.-G., Mammitzsch, V., 1985. Kernels for nonparametric curve estimation. J. Roy. Statist. Soc.
Ser. B 47, 238–252.

Grimmett, G.R., Stirzaker, D.R., 2001. Probability and Random Processes, 3rd ed.. The Clarendon Press, Oxford
University Press, New York.

Gu, C., 2002. Smoothing Spline ANOVA Models, Springer, New York.
Gu, C., Xiang, D., 2001. Cross-validating non-Gaussian data: generalized approximate cross-validation revisited.

J. Comput. Graphical Statist. 10, 581–591.
Hastie, T.J., Tibshirani, R.J., 1990. Generalized Additive Models, Chapman & Hall, London.
Hudson, H.M., 1978. A natural identity for exponential families with applications in multiparameter estimation.

Ann. Statist. 6, 473–484.
Hudson, H.M., 1985. Adaptive estimator for simultaneous estimation of Poisson means. Ann. Statist. 13,

246–261.
Hudson, H.M., Lee, T.C.M., 1998. Maximum likelihood restoration and choice of smoothing parameter in

deconvolution of image data subject to Poisson noise. Comput. Statist. Data Anal. 26, 393–410.
Kolaczyk, E.D., 1997. Nonparametric estimation of gamma-ray burst intensities using Haar wavelets. Astrophys.

J. 483, 340–349.
Kolaczyk, E.D., 1998. Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds.

Statist. Sinica 9, 119–135.
Kolaczyk, E.D., 1999. Bayesian multi-scale models for poisson processes. J. Amer. Statist. Assoc. 94, 920–933.
La Riviere, P.J., Pan, X., 2000. Nonparametric regression sinogram smoothing using a roughness-penalized Poisson

likelihood of objective function. IEEE Trans. Med. Imaging 19, 773–786.
Linhart, H., Zucchini, W., 1986. Model Selection, Wiley, New York.
Nowak, R.D., Kolaczyk, E.D., 2000. A statistical multiscale framework for poisson inverse problems. IEEE Trans.

Inform. Theory 46, 1811–1825.



908 J. Hannig, T.C.M. Lee / Journal of Statistical Planning and Inference 136 (2006) 882–908

Pawitan, Y., O’Sullivan, F., 1993. Data dependent bandwidth selection for emission computed tomography
reconstruction. IEEE Trans. Med. Imaging 12, 167–172.

van Dyk, D.A., Connors, A., Kashyap, V.I., Siemiginowska, A., 2001. Analysis of energy spectra with low photon
counts via Bayesian posterior simulation. Astrophys. J. 548, 224–243.

Wand, M.P., Jones, M.C., 1995. Kernel Smoothing, Chapman & Hall, London.
Xiang, D., Wahba, G., 1996. A generalized approximate cross validation for smoothing splines with non-Gaussian

data. Statist. Sinica 6, 675–692.


	On Poisson signal estimation under Kullback--Leibler discrepancy and squared risk
	Introduction
	Theoretical results
	Estimating the KL discrepancy
	Estimating the L2 risk
	Computational issues

	Numerical results
	Setup
	Results

	Concluding remarks
	Acknowledgements
	Appendix A. Derivation of DeltaKL(f,f)
	Appendix B. Construction of DeltaKLk(h)
	Appendix C. Proof of Theorem 1
	Appendix D. Proof of Theorem 2
	References


