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Abstract

This paper studies the k-segments algorithm proposed by Verbeek et al. [Verbeek, J.J., Vlassis, N., Krose, B., 2002. A k-segments
algorithm for finding principal curves, Pattern Recognition Lett. 23, 1009–1017] for computing principal curves. In particular an auto-
matic method for choosing the ‘‘free’’ parameters in this k-segments algorithm is proposed. Experimental results are provided to dem-
onstrate the performance of this proposed method.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Hastie and Stuetzle (1989) introduce principal curves as
smooth one-dimensional (1D) curves that pass through the
‘‘middle’’ of a set of p-dimensional data points, providing
smooth and curvilinear summaries of p-dimensional data.
Here a 1D curve in a p-dimensional space is a vector f of
p functions indexed by one single variable t. The parameter
t is the arc length along the curve.

For any density h in Rp with finite second moments, the
curve f is a principal curve of h if the following self-consis-

tent criterion is satisfied for almost every t:

EfX jtf ðX Þ ¼ tg ¼ f ðtÞ. ð1Þ
In the above X is a random vector from h, tf(Æ) is the pro-
jection index function which maps any value of X = x to
the value of t for which f(t) is closest to x. In Hastie and
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Stuetzle (1989) the practical algorithm for computing a
principal curve applies definition (1) iteratively, with the
conditional expectation operation approximated by a scat-
terplot smoothing operation. Alternative definitions for
principal curves are given by Tibshirani (1992) and Kegl
et al. (2000), while additional algorithms for computing
principal curves are developed for examples by Cheng
et al. (2004) and Kegl et al. (2000). In addition, the gener-
ative topographic mapping of Bishop et al. (1998), the
growing cell structures vector quantization technique of
Fritzke (1994), and the self-organizing maps vector quanti-
zation technique described in Kohonen (1995) can also be
applied to compute approximations to principal curves.

However, as pointed out by Verbeek et al. (2002), these
algorithms often perform poorly when the data are clus-
tered around highly curved or intersecting structures. In
order to solve this issue, Verbeek et al. (2002) propose a
so-called k-segments algorithm for finding principal curves.
This k-segments algorithm first locate k different line seg-
ments in the data set, then these k located segments are
linked together to form a polygonal line. This polygonal
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line can be used as a first approximation to the principal
curve for the data set, and can be further smoothed to
obtain a smooth principal curve.

In the practical implementation of this k-segments algo-
rithms, two parameters are required to be chosen. The first
parameter is k; that is, the number of line segments. Ver-
beek et al. (2002) provide a likelihood based method for
choosing its value. The second parameter, denoted as k
by Verbeek et al. (2002), is used to determine how the ini-
tial segments are linked to form a polygonal line. This
parameter k, roughly speaking, can be treated as a tradeoff
parameter for balancing how closely the final resulting
principal curve should follow the data and how smooth
the curve should be. It is stated in Verbeek et al. (2002)
that, especially when the principal curve is self-intersecting,
choosing a suitable value for k is an important issue.
Although the idea of using the minimum description length
principle of Rissanen (1989) for solving this parameter
selection problem has been mentioned by Verbeek et al.
(2002), no practical implementation has been reported in
Verbeek et al. (2002).

The goal of this paper is to develop an automatic
method for simultaneously choosing the values of k and
k. This method is based on the minimum description length
principle, and results from numerical experiments demon-
strate the good performance of this method. We shall focus
on the two-dimensional (2D) setting. Extensions to higher
dimensions are straightforward.

The rest of this paper is organized as follows. First a
probabilistic model for principal curves and a brief descrip-
tion of the k-segments algorithm of Verbeek et al. (2002) is
given in Section 2. The proposed method for choosing k

and k is then presented in Section 3. Results of numerical
experiments conducted for evaluating the performance of
the proposed method is reported in Section 4. Lastly con-
clusion is offered in Section 5 while technical details are
deferred to Appendix A.

2. Background

2.1. A probabilistic model

Here we describe a probabilistic model for principal
curves. Similar models can be found for example in Ver-
beek et al. (2002) and Delicado and Huerta (2003).

Available is a set x of n spatial points x1, . . . ,xn observed
in a 2D region. It is assumed that there is one curvilinear
feature F in this 2D region, and that each xi is indepen-
dently generated by the following stochastic mechanism.
First a point ti is randomly selected along F. Then xi is
generated at a random distance di from ti in the direction
orthogonal to the tangent of F at ti, with equal probabil-
ities of being above or below ti. These random distances di’s
are identically and independently distributed (iid) as
N(0,r2). We assume that the curvilinear feature F can be
well approximated by a principal curve. The goal is, given
x, to recover F.
2.2. The k-segments algorithm of Verbeek,

Vlassis and Kröse

Due to its speed and superior performance, especially in
handling self-intersecting features, the k-segments algo-
rithm of Verbeek et al. (2002) rapidly gains its popularity.
Here we provide a brief description of this algorithm.

For any given value of k, the k-segments algorithm
locates k (disjoint) line segments that attempt to capture
the shape characteristics of x. Next these k line segments
are linked together to form a polygonal line, which can
be used as a first approximation to the principal curve
for x. To determine how these k line segments are linked,
the idea of a Hamiltonian path is used. For our problem
a Hamiltonian path is a linked polygonal line that passes
through all n data points x1, . . . ,xn exactly once, subject
to the constraint that those k line segments are all linked
together. The final desired polygonal line is the one that
minimizes the following cost function

cost ¼ flength of the linked polygonal lineg
þ kfsum of angles between all pairs

of adjacent line segmentsg.

In the above the pre-specified parameter k controls the
trade-off between the length and the smoothness of the
linked polygonal line.

One can see that the quality of the final principal curve
highly depends on the values of k and k. Verbeek et al.
(2002) provide a likelihood based method for determining
k, but an automatic method for choosing k is lacking.
3. The proposed automatic parameter selection method

For a given set of data, applying the k-segments algorithm
with different combinations of the parameters (k,k) would
lead to different linked polygonal lines. The aim of this sec-
tion is to develop an automatic method for choosing the
‘‘best’’ combination of (k,k). We will make the assumption
that the target principal curve that we would like to recover
is smooth, but we allow self-intersections in the curve.

Our approach for developing such an automatic para-
meter selection method is as follows. First we transform
the problem of choosing (k,k) as a statistical model selec-
tion problem. As demonstrated below, this is achieved by
making various statistical assumptions on the data and also
the linked polygonal lines. Then the minimum description
length (MDL) principle of Rissanen (1989) is applied to
derive a solution to this selection problem. In general, the
MDL principle solves a statistical model selection problem
by seeking an effective representation, or summary, of the
data via the idea of code length minimization. This code
length minimization idea has been successfully applied to
solve various image and signal processing problems (e.g.,
see Hansen and Yu, 2000; Lee and Talbot, 1997; Xie
et al., 2004), and is expected to perform equally well for
the current problem.
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For the current problem the MDL principle defines a
‘‘best’’ combination of (k,k) as the one that enables the best
encoding of the data x, so that these data can be transmit-
ted (or compressed) in the most economical way. That is,
the best (k,k) combination is the one that produces the
shortest description length of x. Therefore, in order to
apply the MDL principle to tackle this problem, we first
need to construct a code length expression which calculates
the amount of space (in terms of number bits) that is
required to store x for a given (k,k) combination. Then
the best (k,k) combination is defined as the minimizer of
this code length expression. We will use the two-part
MDL of Rissanen (1989) to derive such a code length
expression.

The idea of the two-part MDL is to first decompose x, in
a natural manner, into two parts and then encode each part
separately. Here this two-part approach suggests that, for
each data point xi we first encode its orthogonal projection
x̂i on the approximated principal curve and then encode the
difference vector kxi � x̂ik between xi and its projection
point x̂i. Now to encode all the projection points fx̂ign

i¼1,
one could first supply an approximated principal curve
(i.e., a polygonal line), and then for each x̂i, the distance,
or arc length, that one needs to travel on the polygonal line
from one of its endpoints. Denote the polygonal line as P,
and the corresponding arc length for x̂i as ti. Therefore, a
complete knowledge of P and ftign

i¼1 allows a full recovery
of all the projection points fx̂ign

i¼1. If we use C(y) to denote
the code length for the object y, then the code length C(x)
required to encode x can be expressed as
: detected line segments

: links

z, location of the endpoint

α1

β1

α2
β2

first segment with slope m and length S

first link with length L 1

second segment w

Fig. 1. Notation for
CðxÞ ¼ Cðfx̂ign
i¼1Þ þ Cðfkxi � x̂ikgn

i¼1Þ
¼ CðPÞ þ Cðftign

i¼1Þ þ Cðfkxi � x̂ikgn
i¼1Þ ð2Þ

Now the task is to obtain a computable expression for C(x)
so that the best combination of (k,k) can be obtained as its
minimizer.

3.1. Code length calculation for C(P)

We need some additional notation to proceed (see
Fig. 1). A reconnected polygonal line P is composed of a
series of line segments and links; i.e., the detected line seg-
ments are linked together by the links to form the polygo-
nal line P. Denote the length of the ith line segment as Si

and the length of the jth link as Lj, where i = 1, . . . ,k and
j = 1, . . . ,k � 1. Let z and m respectively be the position
of the free endpoint and the slope of the first segment. Also
let ai and bi respectively be the smaller angles between the
ith segment and the ith link, and between ith link and
(i + 1)th segment, for i = 1, . . . ,k � 1. With this notation,
the code length C(P) of P can be decomposed into

CðP Þ ¼ CðzÞ þ CðmÞ þ CðS1Þ þ Cða1Þ
þ Cðdirection of a1Þ þ CðL1Þ þ Cðb1Þ
þ Cðdirection of b1Þ þ CðS2Þ þ Cða2Þ
þ Cðdirection of a2Þ þ CðL2Þ þ Cðb2Þ
þ Cðdirection of b2Þ þ � � � þ CðSkÞ. ð3Þ

In order to proceed further, we make the following
assumptions. Note that some of these assumptions were
ith link with length L

(i+1)th segment with length S

α

α

βi–1

βi

i

i+11

ith length S2

i

ith segment with length Si

i+1

polygonal line P.
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also adopted by Lee and Talbot (1997), in which the MDL
principle was applied to solve a simpler line segment join-
ing problem.

(Al) The endpoint z of the first line segment is uniformly
distributed in the space of the data, and the slope m
of this same line segment is uniformly distributed in
[0,2p). This is the same as stating that nothing is
known about the first line segment, as its location
and orientation are completely random.

(A2) The lengths S1, . . . ,Sk of the segments are inde-
pendently and identically distributed (iid) as a log-
normal distribution with unknown mean lS and
unknown variance r2

S . That is, their common prob-
ability density function (pdf) is
fSðsÞ ¼
1

s
ffiffiffiffiffiffiffiffiffiffi
2pr2

S

p exp � 1

2r2
S

ðln s� lSÞ
2

� �
; s > 0.
The log-normal distribution is one of the most com-
mon statistical models for modeling the length of ob-
Fig. 2. Spiral: fitted line segments and links obtained
jects. It is because its domain is non-zero and it also
possesses many desirable statistical properties (e.g.,
closed-form maximum likelihood estimators exist
for its parameters).

(A3) The lengths L1, . . . ,Lk�1 of the links are iid exponen-
tials with unknown mean l. That is, their common
pdf is
by the
fLðlÞ ¼
1

l
exp

�l
l

� �
; l > 0.
Modeling Li’s with exponentials means that short
links are encouraged.

(A4) The quantities p � ai and p � bi, i = 1, . . . ,k � 1, are
iid truncated exponentials with unknown mean m and
truncation at p (e.g., see Johnson et al., 1994, Chapter
19). For convenience, we write ci = (p � ai) and
ck+i�1 = (p � bi), i = 1, . . . ,k � 1. It follows that the
ci’s are iid with the following common pdf:� �

fcðhÞ ¼ 1� exp

�p
m

� �n o�1 1

m
exp

�h
m

; 0 < h < p.

ð4Þ
k-segments algorithm for k = 4,10,17,20.
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Thus we prefer the angles ai’s and bi’s to be close to p,
which in turns suggesting that we prefer the line seg-
ments and the links are well aligned.

Now if L ¼
P

Li=ðk � 1Þ and �c ¼
P

ci=ð2k � 2Þ, then it
is shown in the Appendix that C(L) can be well approxi-
mated by (upto a constant):

CðP Þ ¼ 3ðk � 1Þ þ ðk � 1Þ log Lþ logðk � 1Þ þ log k

þ k
2

logð2pþ 1Þ þ
Xk

i¼1

log Si þ
k
2

log r̂2
S

þ 2ðk � 1Þ log 1� exp
�p
m̂

� �n o
þ log m̂þ �c

m̂

	 

; ð5Þ

where

m̂ ¼ �cþ p exp
p
�c

� �
� 1

� ��1

; l̂S ¼
1

k

Xk

i¼1

log Si and

r̂2
S ¼

1

k

Xk

i¼1

ðlog Si � l̂SÞ2.
Fig. 3. Spiral: fitted line segments and links obtained by the
3.2. Code length calculation for Cðftign
i¼1Þ and

Cðfkxi � x̂ikgn
i¼1Þ

Under our probabilistic model assumptions, the projec-
tions x̂i’s are independently and uniformly distributed
along the principal curve. If the length of the polygonal line
P is T, this uniform distribution assumption is equivalent
to assuming that the arc length ti’s are iid uniform in
[0,T]. Using (A.1) in the appendix, and ignoring negligible
terms, we obtain

Cðftign
i¼1Þ ¼ n log T .

Now for the code length of the difference kxi � x̂ik’s. Under
our model assumptions, these differences kxi � x̂ik’s are iid
N(0,r2), in which the maximum likelihood estimate (MLE)
for r2 is r̂2 ¼ 1

n

Pn
i¼1kxi � x̂ik2. Now by applying (A.1) and

dropping negligible terms, we have

Cðfkxi � x̂ikgn
i¼1Þ ¼

1

2
log nþ n

2
log r̂2.

Notice that we have also ignored the code length that de-
scribes, for all i, whether xi lies above or below the poly-
k-segments algorithm for k = 0,1,20,100, all with k = 17.
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gonal line. It is because for each xi it takes log2 2 = 1 bit to
encode this information and hence the total code length for
all xi’s is n, which is a constant with respect to our minimi-
zation problem. Now, from (2), the overall code length for
C(x) is

CðxÞ ¼ CðP Þ þ Cðftign
i¼1Þ þ Cðfkxi � x̂ikgn

i¼1Þ

¼ 3ðk � 1Þ þ ðk � 1Þ log Lþ logðk � 1Þ þ log k

þ k
2

logð2pþ 1Þ þ
Xk

i¼1

log Si þ
k
2

log r̂2
S

þ 2ðk � 1Þ log 1� exp
�p
m̂

� �n o
þ log m̂þ �c

m̂

	 


þ n log T þ 1

2
log nþ n

2
log r̂2. ð6Þ

We propose to choose (k,k) as the pair that minimizes (6).
Notice that k enters this expression through the two
‘‘angle-related’’ quantities �c and m̂, as k controls the angles
between the line segments and the links. A direct compari-
son shows that this overall code length formula, (6), can be
Fig. 5. cros3: fitted line segments and links obtained
seen as a refinement of the likelihood function (8) of Ver-
beek et al. (2002).
by the k-segments algorithm for k = 4,9,16,20.
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3.3. Practical minimization of (6)

Due to the co mplicated nature of (6), analytic minimi-
zation of this code length formula seems to be intractable.
Therefore in practice we minimizes this code length for-
mula (6) by conducting a 2D grid search in the space of
(k,k). That is, we first compute (6) for a set of different
combinations of (k,k) and then choose the pair that gives
the smallest value of (6) as the final minimizer. In all our
numerical experiments we computed 20 · 10 different com-
binations of (k,k), where k ranged from 1 to 20 with a unit
increment, while the 10 values of k ranged from 0 to 100
with approximate equal spacing in the log scale. For all
the examples to be reported in the next section, with an
Intel Pentium M 1.6 GHz machine, it took 1000–1200 s
to finish one minimization.
4. Numerical examples

In this section we assess the practical performance of the
proposed method with two artificial examples. These two
Fig. 6. cros3: fitted line segments and links obtained by the k
examples have been used by previous authors (e.g., Kegl
et al., 2000 and Verbeek et al., 2002).

4.1. Spiral

The true curvilinear feature in this first example is a
spiral. From this feature 300 spatial points xi’s were
generated with noise standard deviation r = 0.01. The k-
segments algorithm was applied to compute the corres-
ponding principal curves for different combinations of
(k,k). For illustrative purposes, the resulting principal
curves for k = 4,10,17,20, with their best k values, are
given in Fig. 2. In each subplot, the data points xi’s are
shown as dots, the fitted line segments are denoted by thick
lines, and the links are shown as dotted lines.

The MDL scores for the four cases when k = 4,10,17,20
are �410, �786, �965 and �953, respectively. Thus MDL
suggests that k = 17 is the best choice. One can see that, for
k = 4, the number of line segments is not large enough to
capture the shape characteristics of the spiral. For
k = 10,17,20, it seems that the overall shape is well cap-
tured by the linked polygonal lines. However, one could
-segments algorithm for k = 0,1,20,100, all with k = 16.
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see that k = 10 underfits while k = 20 overfits the data. To
demonstrate the effect of k on the linked polygonal lines,
displayed in Fig. 3 are four sets of linked polygonal lines,
all obtained with k = 17 but with different values of k.
One can see that the MDL choice (k = 1) gives the best
visual result. Lastly, the linked polygonal line for the best
combination of (k,k) is further smoothed to obtain a
smooth representation of the spiral. This smoothed poly-
gonal line is shown in Fig. 4.

4.2. Self-intersecting

In this second example the true curvilinear feature is
self-intersecting, and is termed cros3 by Verbeek et al.
(2002). Its coordinates are given by

½
ffiffi
t
p
f0:1þ sinð4pt þ 0:4Þg; t þ 1:1þ cosð3pt þ 0:1Þ�;

t 2 ½0; 1�.

Three hundred data points were generated with r = 0.03.
As before, the k-segments algorithm was applied to com-
pute different principal curves for different combinations
of (k,k). Again, for illustrative purposes, the resulting prin-
cipal curves for k = 4,9,16,20 are displayed in Fig. 5. The
corresponding MDL scores are, respectively, �368, �598,
�772 and �764. For k = 4 and k = 9, the resulting linked
polygonal lines outline some major characteristics of the
curve, but are still insufficient to represent the whole. For
k = 20, the linked polygonal line does capture the overall
shape of the curve, but it also includes some spurious struc-
tures, such as the extra line segment in the upper right cor-
ner. Thus it appears that k = 16 is the best reconstruction,
which is the one suggested by MDL. As in the previous
example, linked polygonal lines correspond to different
k’s are also obtained; see Fig. 6. Finally, Fig. 7 depicts
the smoothed polygonal line obtained from the best combi-
nation of (k,k).
5. Conclusion

In this paper we studied the k-segments algorithm pro-
posed by Verbeek et al. (2002) for computing principal
curves. In particular we developed an automatic method
for choosing the ‘‘free’’ tuning parameters (k,k) of this k-
segments algorithm. The idea was to first pose this choosing
problem as a statistical model selection problem, and then
apply the minimum description length principle to derive
a solution. Numerical experiments were also performed
for demonstrating the effectiveness of this new parameter
selection method. Possible extensions of the present work
include generalizing the current selection method to the
cases when there are more than one principle curve in the
space, and/or when background noise are present.
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Appendix A. Derivation of code length expression (5)

This appendix derives the code length expression (5).
First we present the following useful result from Rissanen
(1989) (see also Lee, 2001). Suppose one would like to
encode N iid observations y = (y1, . . . ,yN) generated from
the pdf f(y;h1, . . . ,hd) with d unknown parameters
h1, . . . ,hd. If these hi’s are known, then classical coding
results of Shannon suggest that CðyÞ ¼ �

PN
i¼1log2f ðyi;

h1; . . . ; hdÞ. Now if the hi’s are unknown, one could first esti-
mate them from the data y, and then apply Shannon’s
results with the unknown hi’s replaced by their estimates
ĥi’s. Under this situation, Rissanen (1989, pp. 55–56) dem-
onstrates that an maximum likelihood estimate (MLE)
computed from Ndata points can be effectively encoded
by 1

2
log2N bits. Thus the code length for each ĥi; is 1

2
log2N

bits, and the overall code length for y is

CðyÞ ¼ d
2

log2N �
XN

i¼1

log2f ðyi; ĥ1; . . . ; ĥdÞ. ðA:1Þ

Code lengths for z and m: Since z is assumed to be uni-
formly distributed in the space of x, and m is assumed to
be uniform from [0, 2p), their code lengths are the same
for different values of (k,k). Therefore their values will have
no effect on the minimization and hence are omitted from
Expression (5).

Code length for Si’s: from Assumption A2 one can see
that (A.1) can be directly applied to calculate the code
length for Si’s. There are two unknown parameters, lS

and r2
S , and their MLEs are respectively

l̂S ¼
1

k

Xk

i¼1

ln Si and r̂2
S ¼

1

k

Xk

i¼1

ðln Si � l̂SÞ2.
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Since both of these MLEs are calculated from k data
points, their code length is 2� 1

2
log2k ¼ log2k. This corre-

sponds to the first term of (A.1). For the second term of
(A.1), one calculates

�
Xk

i¼1

log2fSðSi; l̂S ; r̂
2
SÞ

¼ �
Xk

i¼1

log2

1

Si

ffiffiffiffiffiffiffiffiffiffi
2pr̂2

S

p exp � 1

2r̂2
S

ðln Si � l̂SÞ2
� �" #

¼
Xk

i¼1

log2Si þ
k
2

log2ð2pr̂2
SÞ þ

1

2r̂2
S

Xk

i¼1

ðln Si � l̂SÞ2

¼
Xk

i¼1

log2Si þ
k
2

log2ð2pr̂2
SÞ þ

1

2r̂2
S

kr̂2
S

¼
Xk

i¼1

log2Si þ
k
2

log2ð2pÞ þ k
2

log2ðr̂2
SÞ þ

k
2

.

Combining these two terms one obtains

Xk

i¼1

CðSiÞ ¼ log2k þ k
2
ðlog22pþ 1Þ þ k

2
log2r̂

2
S þ

Xk

i¼1

log2Si.

Code length for Li’s: as similar to those Si’s. Assumption
A3 enables us to apply (A.1) to calculate the code length
for the Li’s. The only unknown parameter in the common
pdf (exponential) of the Li’s is l, which can be estimated by
l̂ ¼ L ¼

P
Li=ðk � 1Þ. Notice that l̂ is computed from

k � 1 data points, so it needs 1
2
log2ðk � 1Þ bits to encode.

With (A.1), a straightforward calculation gives

Xk�1

i¼1

CðLiÞ ¼
1

2
ðk � 1Þ þ ðk � 1Þðlog2Lþ 1Þ.

Code length for ai’s, b’s and their directions: we begin
with computing the code length for the ai’s and the bi’s.
First recall the following definition stated in Assumption
A4: ci = p � ai and ck+i�1 = p � bi, i = 1, . . . ,k � 1. Thus
a complete knowledge of fai; big

k�1
i¼1 implies a complete

knowledge of fcig
2k�2
i¼1 and vice versa. Hence it is enough

to only encode the ci’s. From Assumption A4 one can see
that the ci’s are iid with common pdf (4), and (A.1) can
be applied to calculate the required code length. There is
only one unknown parameter m in pdf (4), whose MLE m̂
is given by the solution of the equation (e.g., see Johnson
et al., 1994, Chapter 19):

m̂ ¼ �hþ p exp
p
m̂

� �
� 1

n o�1

.

However, for the ease of computation and by using the
argument m̂ � 0) expðpmÞ is large) m̂ � �h, we approximate
the MLE of m by

m̂ ¼ �hþ p exp
p
�h

� �
� 1

� ��1

.

Notice that m̂ is estimated from 2k � 2 data points, hence it
requires 1

2
log2ð2k � 2Þ bits to encode. A straightforward

application of (A.1) gives

Xk�1

i¼1

fCðaiÞþCðbiÞg¼
X2k�2

i¼1

CðciÞ¼
1

2
log2ð2k�2Þþð2k�2Þ

� log2 1� exp
�p
m̂

� �n o
þ log2m̂þ

�h
m̂

	 

.

The last part of the code length that we need is the part for
the directions of ai’s and bi’s, Each direction, either upward
or downward, requires 1 bit to encode and thus altogether
it requires 2k � 2 bits to encode all the directions. There-
fore we have

Xk�1

i¼1

fCðaiÞ þ CðbiÞ þ Cðdirection of aiÞ þ Cðdirection of biÞg

¼ 1

2
log2ð2k � 2Þ þ ð2k � 2Þ

� log2 1� exp
�p
m̂

� �n o
þ log2m̂þ

�h
m̂

	 

þ ð2k � 2Þ.

Now if we combine the above relevant code length expres-
sions, ignore constant terms and change log2 to log (natural
log), we obtain expression (5) for C(P).
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