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Data Adaptive Median Filters for Signal and Image
Denoising Using a Generalized SURE Criterion

Hsin-Cheng Huang and Thomas C. M. Lee, Senior Member, IEEE

Abstract—Due to its effectiveness for removing heavy-tail noise
and preserving abrupt structures hidden in noisy data, median fil-
tering has long been a popular tool for signal restoration. In prac-
tice, an important issue of applying median filtering is the choice
of the span. In this letter, we develop a data adaptive criterion
for choosing this span. This criterion is derived using the gener-
alized SURE technique recently proposed by Shen and Huang. It
is designed to handle outliers and heavy-tail noise, and it aims to
minimize the mean-squared error between the true and restored
signals. Results from simulation experiments suggest that the pro-
posed criterion is superior to its competitors.

Index Terms—Covariance penalty, cross-validation, Gaussian
mixtures, generalized Stein’s unbiased risk estimation (GSURE),
outlier modeling, robust smoothing.

I. INTRODUCTION

MEDIAN filtering is a nonlinear robust technique for re-
covering signals hidden in noisy data. For the following

two situations, median filtering tends to provide better signal
estimates when compared to linear estimators. The first is when
the signals to be recovered possess discontinuities. A typical ex-
ample for this is image denoising, as most real images contain
many sharp edges. The second situation is when the noise dis-
tribution is heavy-tail or when the data are contaminated by out-
liers. Consequently, median filtering has been a subject of active
research (see, e.g., [2]–[8]).

In the practical application of median filtering, an important
ingredient is the choice of the span of the moving window, i.e.,
to choose a suitable amount of smoothing. It is because, if the
span is too small, spurious features will not be removed from
the resulting signal estimates, while if the span is too big, real
structures of the signals will be smeared out. While the span
can be chosen satisfactorily in a subjective manner, often, objec-
tive methods are more desirable. To the best of our knowledge,
most existing span selection methods found in the literature are
cross-validation (CV) based (see, e.g., [8] and [9]). In this letter,
we depart from CV and follow the covariance penalty (CP) ap-
proach of [1] to develop a span selection method for median fil-
tering. It has been shown that, for other smoothing problems, CP
outperforms CV (e.g., [10] and [11]), and hence, the expectation
is that CP will also outperform CV for the current span selection

Manuscript received December 15, 2005; revised February 27, 2006. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Olivier Besson.

H.-C. Huang is with the Institute of Statistical Science, Academia Sinica,
Taipei 115, Taiwan, R.O.C. (e-mail: hchuang@stat.sinica.edu.tw).

T. C. M. Lee is with the Department of Statistics, Colorado State University,
Fort Collins, CO 80523-1877 USA (e-mail: tlee@stat.colostate.edu).

Digital Object Identifier 10.1109/LSP.2006.874463

problem. Indeed, numerical results reported below support this
claim.

The rest of this letter is organized as follows. First, back-
ground material is presented in Section II. Then, in Section III,
the CP approach is applied to develop methods for span selec-
tion. Finally, simulation results are reported in Section IV, while
concluding remarks are offered in Section V.

II. BACKGROUND

Consider the following nonparametric regression model:
for , where is the regression

function to be estimated, are observations, and
are independently and identically distributed (i.i.d.)

random errors with zero mean and variance .
For all , denote the median filter estimate with span

for as . This estimate is defined as the
median of . That is, for all ,

, where various
boundary appending strategies can be applied to define the
“data” that are outside the domain of (i.e., and

). Commonly used strategies include the first
and the last values carry-on appending strategy (i.e.,
for and for ) and the periodic appending
strategy (i.e., for ).

Let and . The
goal is to select the best value of so that the following risk
is minimized: In the above,
the expectation is taken with respect to the density of given

. As is an unknown quantity, in practice, cannot be mini-
mized directly. One common strategy to solve this problem is
to construct an estimator for and choose the that min-
imizes such a risk estimator. Stein’s unbiased risk estimation
[12] (SURE) is a popular technique for constructing such an
estimator when the errors ’s are i.i.d. Gaussians. However,
this SURE technique cannot be directly applied for the case of
heavy-tail noise or when outliers are present. To overcome this
problem, we shall follow the CP approach and use the general-
ized SURE (GSURE) formula introduced by [1] to develop such
an estimator.

III. SPAN SELECTION USING GSURE

Let . Using the following identity as in
[13]

, one can show that, up to a constant,
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can be unbiasedly estimated by ,
where

is the covariance penalty for the median regression estimator
. Of course, in practice, is an unknown, and hence, the

above expression cannot be used for estimating .
To apply the GSURE formula for constructing an unbiased

estimator for , define

if
otherwise

where is the probability density function of . Note that
is also a function of , but for simplicity, we suppress

this dependence in its notation. Suppose that is almost dif-
ferentiable in the sense of [12] and that .
Then, it is shown in [1] that and that

. Notice that is
continuous and also almost differentiable in with

if
otherwise.

(1)

Thus and hence can be estimated via the esti-
mation of . Below, we will develop estimators for
under two situations: when the i.i.d. errors ’s are 1) Gaussians
and 2) mixtures of two Gaussian distributions. The latter is a
model for data contaminated by outliers.

To sum up, if we denote our final estimate for as , then
our proposed span selection method for median regression is to
select the span that minimizes

(2)

A. Gaussian Noise

Suppose that the i.i.d. errors are Gaussians,
i.e., for all . In this case, a direct calculation
shows that . Therefore, if an unbiased estimate
for is available, can be unbiasedly estimated by

(3)

where is the number of such that . This ,
which is also the number of observation points that are passed

through by the signal estimates , can be seen as a mea-
sure of model complexity of . If it is known that the noise

are i.i.d. Gaussians, we propose to choose
the span as the minimizer of (2) with given by (3).

In the 1-D setting with i.i.d. Gaussian noise, various methods
have been proposed for estimating (see, e.g., [14] and [15]).
However, these methods may not be statistically optimal when
outliers are present. In Section III-C, we present an effective
method for estimating . This method was designed to accom-
modate outliers and can be applied to both the 1-D and 2-D
settings.

We remark that the above estimator (3) can also be derived
using the original SURE formula in [12]. However, for the mod-
eling of outliers or heavy-tail noise, such as the situation to be
considered next, SURE cannot be applied.

B. Gaussian Mixtures for Outliers and Heavy-Tail
Noise Modeling

Now suppose that the errors follow a
mixture Gaussian distribution ,
where , and is the percentage of outliers.
This is known as the inflated-variance model for outliers [16].
In this case, one can show that

where is the probability density function of the standard
normal distribution. Thus, if preliminary estimates , , ,
and for, respectively, , , , and are available, a natural
plug-in type estimate for is

(4)

In the statistics literature, the above preliminary estimates are
sometimes known as pilot estimates. Successful uses of these
pilot estimates for dealing with various nonparametric estima-
tion problems have been widely reported (see, e.g., [17], [18],
and the many references given therein). Methods for obtaining
pilot estimates for the current problem are provided in the next
subsection.

If it is known that there are outliers or the noise is heavy-tail,
we propose to choose as the minimizer of (2) with as

(5)

where and are given by (4) and (1),
respectively.

Of course, in practice, we will never know if the errors are
i.i.d. Gaussians or heavy-tail or if outliers are present. In other
words, we will not know if we should estimate by (3) or (5).
Our extensive numerical experience suggests that, if the noise is
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Fig. 1. MSE(k) performance of various methods for reconstructing the Blocks function based on 1000 simulation replications.

in fact i.i.d. Gaussians, then estimating with (3) gives mar-
ginally better results than using (5). However, if the noise is
heavy-tail or outliers are present, the use of (3) produces much
worse results then (5). For this reason, we recommend using (5)
if no prior knowledge is available about the nature of the noise.
Also, in the simulation section below, for the same reason, we
only report results when is estimated by (5).

C. Pilot Estimation

This subsection presents our methods for obtaining various
pilot estimates. For the pilot estimation of required in (4),
we found that using median filtering with a relatively small
is a reliable and computationally fast choice. Thus, for the 1-D
setting, we recommend using (i.e., a moving window
of length 5), and for image data, we recommend (i.e.,
a moving window of size 3 3). Below, we denote this pilot
estimate as .

For the estimation of as needed in (4), we first compute
the pilot error estimate for all . Let and
be, respectively, the average and the median absolute deviation
(MAD) of . Remove any that is outside the interval

. This interval can be seen as a robust 99%
confidence interval if the are i.i.d. Gaussians, as in this case,
is a robust estimate for , while 2.58 is the 99.5% percentile for
the standard Gaussian distribution. Thus, the goal of this step is
to remove any that is potentially originated from an outlier.
Finally, the estimate for is taken as the MAD of those
surviving ’s, i.e., those inside . We also
use the same procedure to obtain an estimate for for the use
of (3).

For the estimation of in (4), we only use those ’s that are
outside the interval . Let be the average
of the absolute values of these “outside ’s”. It is straightfor-
ward to show that the method-of-moments estimate of is
the solution to the following equation:

where is the cumulative distribution function for the stan-
dard normal distribution. Notice that the above equation can be
solved rapidly using any standard iterative methods.

Last, for in (4), we use the following method-of-moments
estimate:

IV. SIMULATIONS

Numerical experiments for both 1-D and 2-D settings were
conducted to examine the practical performance of the above
mixture GSURE criterion for selecting , i.e., choose the that
minimizes (2) with estimated by (5). Below, we shall refer to
this method as GSURE, and it was compared to three CV-based
methods: -CV, -CV, and the median CV (MCV) of [9]. Let

be the leave-one-out estimate of in the 1-D setting, i.e.,

. Then, -CV,
-CV, and MCV choose the that minimizes, respectively,

and

For the 1-D setting, the blocks function of [19] was used as the
true function with . Two types of noise distributions
were considered: the Gaussian mixture model discussed in Sec-
tion III-B and the -distribution that exhibits heavy-tail behav-
iors for small degrees of freedom (df). For the mixture model,
the data were generated with , 3, 5, 7, and 10, where

, and the mixture parameter was fixed at .
For the -distribution, the data were generated with , 5,
7, 10, and . Note that and correspond to the
i.i.d. Gaussian noise case. We considered two signal-to-noise
ratios (SNRs): 3 and 7. Let . For the mixture
model, the SNR is defined as , while for
the -distribution, it is defined as , where

is the variance of the -distribution under consideration.
For each generated data set, we applied -CV, -CV, MCV,

and GSURE to choose their best and calculated their ’s.
We have also calculated their corresponding mean-squared error
(MSE) values: MSE . The log of
the averages of these MSE values are summarized in Fig. 1.

For the 2-D image denoising experiments, two test images of
size 256 256 were used. They are the Lena image that has been
used by many authors and the Square image whose pixel value
is 1 if the pixel coordinate is inside [65, 192] [65, 192] and
zero otherwise. Other experimental factors (e.g., SNRs, types
of noise distributions) were the same as for the 1-D setting. The
corresponding log averaged MSE values are summarized in
Fig. 2.

From Figs. 1 and 2, the following empirical conclusions can
be drawn. First, except for the 1-D mixture noise experiments
with , GSURE never gave a worse result than the three
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Fig. 2. MSE(k) performance of various methods for reconstructing images based on 100 simulation replications.

CV-based methods. On the other hand, especially for the Square
image, GSURE often outperformed the CV-based methods.
Second, for the -distribution noise and for all cases with
and , which correspond to the cases of “pure” Gaussian
noise with no outliers nor heavy-tail noise, GSURE performed
the best, despite the fact that GSURE was developed under
the Gaussian mixture model assumption. Finally, it seems that

-CV dominated -CV, while MCV is the least favorable
method.

V. CONCLUSIONS

In this letter, a new automatic method is developed for
choosing the span for median filtering. This new method is
designed to handle outliers and heavy-tail noise and is derived
using the technique of GSURE. Unlike most GSURE-related
procedures for solving nonlinear estimation problems (see,
e.g., [1], [10], and [13]), the proposed span selection method
does not require such Monte Carlo computations, and hence,
it is fast. For example, for the above 1-D experiments, it took
less than 1 s to complete 1 replicate on a Pentium-IV 3.2-Ghz
PC. Given its speed, this GSURE procedure can also be used
as a building block for other more sophisticated median filter
methods, such as those cited above. Numerical results from
both 1-D and 2-D denoising experiments suggest that this new
method is preferable when compared to its competitors.

Last, we conclude this letter with the following general
remark about the GSURE methodology. Similar to the original
SURE criterion [12] that has been applied to a variety of
Gaussian estimation problems, such as estimating the threshold
level in wavelet shrinkage (i.e., the SUREShrink of [19]), the
GSURE methodology can also be applied to conduct parameter
estimation and even to perform model order inference for
parametric models. For example, in the time series setting, it
has been applied to select a “best” fitting model from a set of
different autoregressive models [11].
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